The Out-of-Sample Performance of Stochastic Methods in Forecasting Age-Specific Mortality Rates

by
ORES Working Paper No. 111 (released July 2008)

This paper evaluates the out-of-sample performance of two stochastic models used to forecast age-specific mortality rates: (1) the model proposed by Lee and Carter (1992); and (2) a set of univariate autoregressions linked together by a common residual covariance matrix (Denton, Feavor, and Spencer 2005). To this aim, death rates from 16 industrialized nations are used to compare observed ex-post mortality rates to the forecasts generated by the models. Several functions of the individual age-specific mortality rates are also entertained, including life expectancy at birth (e0), as well as alternative measures of the age-dependency ratio. The latter are constructed based on how the individual mortality rates enter a population projection, and thus, are meant to gauge the potential impact of mortality alone on public retirement programs. In general, both models are found to produce point forecasts for the individual mortality rates, life expectancy, and the dependency ratios that are fairly close to one another. Typically, the median projections of mortality moderately overpredict the actual death rates, particularly for the oldest age groups (ages 65–95 or older). Conversely, the large majority of the point forecasts of life expectancy at birth and the dependency ratios underestimate their observed values. The models also generate interval forecasts of e0 that are "too wide" as their empirical probability content often exceeds their nominal coverage. However, the Lee-Carter model tends to seriously underpredict the forecast uncertainty associated with both the death rates of the oldest ages and the age-dependency ratios, while the autoregressive approach overpredicts this uncertainty in most cases.


The author is with the Division of Economic Research, Office of Research, Evaluation, and Statistics, Office of Retirement and Disability Policy, Social Security Administration.

Working papers in this series are preliminary materials circulated for review and comment. The findings and conclusions expressed in them are the authors' and do not necessarily represent the views of the Social Security Administration.

Introduction

Mortality is one of the key demographic variables affecting the flow of income and expenditures in pay-as-you-go public retirement programs. Indeed, a combination of population aging and declining fertility rates largely drives the currently projected financial imbalance in the U.S. Social Security system. In recent years, official mortality forecasts in a number of industrialized nations have come under greater scrutiny. The deterministic nature of these projections and the role that expert judgment plays in shaping them are often viewed by academics as sources of contention. Meanwhile, demographers and other social scientists are increasingly turning to statistical time series techniques to generate mortality forecasts that are consistent with a probabilistic representation of uncertainty.

This paper will evaluate the performance of two alternative stochastic approaches that can be applied to project age-specific mortality rates. Mortality data from 16 industrialized nations is used to carry out an extensive out-of-sample validation exercise comparing actual mortality rates to the pseudo-forecasts generated by the models. This analysis differs from other ex-post assessments published in the literature in two respects: First, in addition to reporting several single-valued aggregate measures of performance, it also investigates how forecast error is distributed across age groups and forecast horizons. Second, this paper is not only concerned with a model's ability to produce accurate point projections, but also with its capacity to generate a realistic depiction of forecast uncertainty in terms of the empirical probability content of its interval forecasts.

The remainder of the paper is structured as follows: an introduction of the two models that are the focus of the investigation; a description of the experimental design, followed by the proposed ex-post validation exercise, and a discussion on the most salient features of the mortality data used in the paper; a presentation on the out-of-sample performance results; and the conclusion.

The Models

Stochastic forecasts are typically generated based on some underlying time-series statistical model. This time series approach often involves a specified random disturbance shock process, as well as a recursive expression that posits current values of the series in question as a function of previous values. Once the model is fit to a particular data set and estimates of its parameters obtained, future values of the series can be produced by iterating the model forward. For simple models, the forecast distribution may be available in closed-form. Otherwise, the researcher can turn to simulation by drawing from the disturbance process to generate random sample paths of forthcoming observations. In either case, the result is not only a single point forecast but an entire probability distribution describing the uncertainty associated with future outcomes.

Modeling and projecting age-specific mortality rates over time is a high-dimensional forecasting problem. Following the taxonomy suggested in Bell (1997), stochastic projection models can be categorized as parametric or nonparametric, although this can be a somewhat artificial distinction. The parametric or curve-fitting approach involves fitting a curve defined by a finite set of time-varying parameters to the mortality data, based on some optimization criterion. The resulting parameter estimates are then treated as a time series that is projected to recover the different paths of the curve into the future (that is, the mortality forecasts). The nonparametric approach relies on principal components analysis to yield a linear transformation of the data, often in terms of an approximation of reduced dimensions (one or a few principal components).

Stochastic projection methods can be further classified as univariate or multivariate depending on whether the generated forecasts take into account the interdependencies across the age groups. The former proceed by individually fitting each age-specific mortality rate to a univariate time series equation. Although the forecasts produced by univariate methods ignore the typically high cross-correlation among the different age series, they do not necessarily perform worse than multivariate models. For instance, in an ex-post validation experiment, Bell (1997) found that a random-walk with drift applied to each age series led to better short-term forecast performance than any of a variety of multivariate approaches. Nonetheless, there are several problems associated with the univariate route. First, while the projections may be more accurate for each individual age group, they can jointly imply unreasonable behavior. In particular, univariate methods can lead to odd shapes in the fairly regular structure of mortality over the entire age profile. Similarly, since this approach ignores the high degree of correlation among the age series, it is unlikely to provide an accurate picture of overall forecast uncertainty.

This paper focuses on the forecast performance of two models. First, the multivariate nonparametric method proposed by Lee and Carter (1992). This model has gained increasing recognition over the years, becoming a benchmark technique to the most recent technical advisory panels to the Social Security Administration, the U.S. Census Bureau, and several agencies around the world. The second model involves one of the approaches suggested by Denton, Feaver, and Spencer (2005). This parametric model fits first-order autoregressive processes to each age group separately. The resulting residuals are then used to estimate the covariance matrix of the multivariate disturbance process driving joint future variation in the age-specific mortality rates.

The Lee-Carter Model

The approach to mortality modeling proposed by Lee and Carter (1992) postulates the logarithm of a set of age-specific mortality rates as the sum of a time-invariant age-specific element and a second component that changes over time. Formally, let M represent the A × T dimensional matrix of mortality rates with individual elements  m a , t  denoting the death rate for the population of individuals at age a and time t. Then,

(1)  log ( m a , t ) = α a + β a k t + ε a , t

for a = 1,…A, and t = 1,…T.

The age-specific set of parameters αa describes the average shape of the log-mortality rates for every age category. The second component is the product of a time-varying index or trend of the general level of mortality kt and a set of coefficients βa that determine both the direction and magnitude by which mortality at every age varies with the index. Notice also that the parameters βa and kt are not uniquely identified, since for any given constant c, an equivalent representation results by using  β a / c  and  k t c . Thus, Lee and Carter (1992) suggest imposing the following constraints:

(2)  t T k t = 0 ,  a A β a = 1 .

These constraints imply that the estimate of αa is simply the sample mean of the log-mortality rates.

The Lee-Carter model represents a special case of the principal components (PC) analysis applied by Bell and Monsell (1991) to forecast age-specific mortality rates. Intuitively, PC analysis yields an approximation of the A age-specific mortality rates as the linear combination of p "basic elements" or principal components estimated from the data, where typically pA. One way to compute the latter is via singular value decomposition (SVD). Specifically, let M define the matrix of centered age profiles obtained by subtracting the A sample logarithmic mortality means from the columns of the matrix log(M). The singular value decomposition of M yields a representation involving the product of the following three matrices:

(3)  M ˜ = B L U ,

where L is a diagonal matrix with the singular values ordered from high to low, while B is an orthonormal matrix whose first p columns correspond to the first p principal components.1 The Lee-Carter model uses only the first principal component (p = 1). Therefore, the easiest way to estimate its parameters is by setting  α ^ a  to the sample mean of the log-mortality rates,  β ^ a  to the first column of B, and  k ^ t  to the first row of LU subject to the constraints in (2). These parameter values can be thought of as the least square estimates resulting from minimizing the sum of squared errors function

(4)  min α a , β a , k t a t ( log ( m a , t ) α a β a k t ) 2 .

Once equation (1) is fitted to the data, the parameter estimates  α ^ a  and  β ^ a  are taken to be fixed, while the log mortality index  k ^ t  provides a univariate time series whose future values can be forecasted using standard Box-Jenkins techniques. In most applications, a random-walk with drift is empirically found to yield a suitable fit to  k ^ t

(5)  k ^ t = k ^ t 1 + μ + e t ,  e t N ( 0 , σ e 2 ) ,

leading to the following maximum likelihood estimates for the drift and variance parameters:2

(6)  μ ^ = k ^ T k ^ 1 T 1 ,  σ ^ e 2 = 1 T 1 t = 1 T 1 ( k ^ t + 1 k ^ t μ ^ ) 2 .

Moreover, future values of  k ^ t  can be obtained either analytically or via simulation, by iterating equation (5) forward

(7)  k T + h = k ^ T + h μ ^ + i = 1 h e T + i ,

where conditionally on the estimates  k ^ 1 , k ^ 2 ,…, k ^ T , the usual mean forecast is a straight line as a function of the forecast horizon h with slope  μ ^

(8)  E [ k T + h | k ^ 1 , k ^ 2 , , k ^ T ] = k ^ T + h μ ^ .

It is then a simple matter to "plug" the projected values of the log-mortality index  k ^ T + h  back into equation (1) to recover the forecasts associated with each age-specific future mortality

log ( m a , T + h ) = α ^ a + β ^ a k T + h
m a , T + h = exp ( α ^ a + β ^ a k T + h ) .

The Lee-Carter model yields a parsimonious stochastic approach to mortality forecasting that is easy to implement and often produces reasonable forecasts for all-cause age-specific mortality. The method, however, is not without its limitations. First, a linear trend in the mortality index kt does not hold empirically in very long data sets. It entails a constant geometric rate of decline for each age-specific mortality

(9)  d log ( m a , t ) d t = β a d k t d t .

Yet, there is evidence that in a number of industrialized countries, the age pattern of mortality decline over the past few decades has reversed (Lee and Miller; 2001). In particular, the rapid decline in infant and child mortality characterizing the first half of the twentieth century has diminished, with mortality decreasing faster for the elderly. Furthermore, the Lee-Carter model implies that the rates of mortality decline for different ages (for instance, a1 and a2) maintain a constant ratio to each other over time, regardless of which univariate time series process is used to forecast kt :

(10)  d log ( m a 1 , t ) / d t d log ( m a 2 , t ) / d t = β a 1 d k t / d t β a 2 d k t / d t = β a 1 β a 2 .

As a result, the assumption of holding βa constant over time seems unrealistic.

Finally, the Lee-Carter model incorporates uncertainty through a single source (the sampling uncertainty derived from forecasting kt). It is also possible to accommodate additional uncertainty about the trend in mortality linked to the estimate of the drift parameter μ, as Lee and Carter (1992) originally discussed. However, this still ignores uncertainty in the estimation of the βa coefficients associated with kt as well as the error from fitting the model using only the first principal component. Some demographers have criticized the model's interval forecasts as implausibly narrow.

Some Extensions of the Lee-Carter Model

There have been a number of refinements to the Lee-Carter specification. In fact, in their original article, Lee and Carter (1992) addressed the two modifications considered in this paper. In particular, the authors observed that the models' forecasts do not match the initial conditions in the jump-off year (that is, the forecasts are not linked to the actual mortality rates at the end of the base period). One easy way to solve this problem is to set αa equal to the most recently observed logarithmic age-specific rates, instead of their time average. However, Lee and Carter (1992) caution that such an approach might extrapolate features of mortality that are specific to the jump-off year and could have a negative impact on model fit and forecast performance. In subsequent papers, Lee (2000) and Lee and Miller (2002) seem to have reconsidered this position, favoring the modified value of αa for forecasting purposes. Bell (1997), who also supports this bias correction step, finds dramatic improvements in short-term out-of-sample forecast performance when setting αa equal to the logarithm of the age-specific rates in the base year.3

Another improvement to the Lee-Carter model is concerned with the fact that the OLS estimates of its parameters are the values minimizing error in the logarithm of the death rates, rather than the death rates themselves. Consequently, the total number of deaths predicted by the model is not guaranteed to match the observed death counts in the sample. Lee and Carter (1992) propose a second stage reestimation of the mortality index by holding  α ^ a  and  β ^ a  fixed, while searching for a new estimate  k ^ t  satisfying the following equation

(11)  D t = a { exp ( α ^ a + β ^ a k ^ t ) P a , t } ,

where Dt and  P a , t  are respectively the total number of deaths and the population age a in year t. Wilmoth (1993) suggests an alternative computational approach that estimates αa, βa, and kt simultaneously via weighted least squares, using the number of deaths at each age as weights

(12)  min α a , β a , k t a t D a t ( log ( m a , t ) α a β a k t ) 2 .

The first model this paper entertains is a variant of Lee-Carter, incorporating the bias corrections described in the previous paragraphs. Specifically, after some preliminary experimentation, a decision was made to settle on the following estimation approach: first, the model's parameters are computed by applying SVD on the matrix  M ˜  of centered logarithmic age profiles. Next, αa is set equal to the logarithm of the age-specific rates corresponding to the last period in the sample. Finally, a second stage reestimation of kt is performed to match total observed and fitted deaths.

A First-Order Autoregressive Approach

In a recent paper, Denton, Feaver, and Spencer (2005) suggest a number of multivariate time-series econometric specifications as alternatives to the Lee-Carter method. One such possibility is to model the first difference of logarithmic mortality  Δ log ( m a , t ) = log ( m a , t ) log ( m a , t 1 )  as a pth-order autoregressive process AR (p):

(13)  Δ log ( m a , t ) = c a + s = 1 p ϕ s a Δ log ( m a , t s ) + e a , t .

Future changes in the individual mortality rates are determined by their own past values plus a random disturbance term  e a , t . The age-specific series are estimated within a system of seemingly unrelated regression equations (SURE) to accommodate the significant contemporaneous correlation characterizing mortality data. Denton, Feavor, and Spencer (2005) further suggest a second specification, which they refer to as a quasi-vector autoregressive approach QVAR (p)

Δ log ( m a , t ) = c a + s = 1 p [ ϕ s a Δ log ( m a , t s ) + ϕ s a Δ log ( K t s ) ] + e a , t ,

where Kt represents an index of mortality that is a function of all the individual age-specific mortality rates, much like in the Lee-Carter model.

The second model this paper entertains is a variant of equation (13) with p = 1 lags. Formally, let  m a , t  denote the annual rate of improvement in mortality expressed as the negative of the percent change in the central death rate:

(14)  m a , t = 100 m a , t m a , t 1 m a , t 1 .

Each series is then fitted individually to a first-order univariate autoregressive AR(1) model 4

(15)  m a , t = c a + ϕ a m a , t 1 + e a , t ,  e a , t N ( 0 , σ e 2 ) .

Once parameter estimates  c ^ a , ϕ ^ a , and σ ^ e 2  are computed, recursive substitution can generate forecasts of future rates in mortality improvement by iterating equation (15) forward

(16)  m a , T + h = ϕ ^ a h m a , T + i = 0 h 1 ϕ ^ a i c ^ a + i = 0 h 1 ϕ ^ a i e a , T + h i .

The process  m a , t  can be shown to be covariance stationary if  | ϕ a | < 1 , with mean and variance respectively equal to

(17)  μ a = c a 1 ϕ a ,  σ a 2 = σ e 2 1 ϕ a 2 .

For a covariance stationary process, the mean h-step-ahead forecast, conditional on the previous observations is given by

(18)  E [ m a , T + h | m a , 1 , m a , 2 , , m a , T ] = μ ^ a + ϕ ^ a h ( m a , T μ ^ a ) .

indicating that the projection decays geometrically from  ( m a , T μ ^ a )  to the unconditional estimated mean  μ ^ a , as the forecast horizon h increases. However, since each individual forecast ignores the typically high correlation among the age groups, the model is modified to accommodate a joint disturbance process. In particular, the estimated residuals  e ^ a , t  are used to compute the following covariance matrix

(19)  Ω ^ = S S T ,

where each column of S corresponds to the residuals obtained from each equation. Stochastic paths for the rates of mortality improvement are then generated by simulating random shock vectors  e t N ( 0 , Ω ^ )  from the multivariate normal distribution.

Data and Experimental Design

The data sets used to carry out the ex-post validation exercise proposed in this paper were obtained from the Human Mortality Database (HMD) and consist of mortality rates from 16 industrialized nations for males and females combined.5 Wilmoth (2004) documents the methods by which the raw data were converted into mortality rates. The investigation in this paper focuses on period death rates rather than cohort rates. In other words, the mortality rates are indexed by year of occurrence rather than year of birth, so that  m a , t  denotes mortality at age a occurring in year t, rather than the death rate of individuals aged a born in year t. While analysis of rates on a cohort basis might be preferable, a complete set of cohort mortalities requires a much longer time frame and can involve significant missing data problems.

Formally, the period death rate  m a , t  is defined as the ratio

(20)  m a , t = D a , t E a , t ,

where  D a , t  is the death count for the population in the age range [a, a + 1) on January 1st of calendar year t, while  E a , t  represents the exposure-to-risk (that is, the population exposed to the risk of death), measured as total person-years lived in the same age interval and time period. Generally, for a given country and year t, death counts and exposure-to-risk are available by single year of age from birth (age 0) to the open interval 110-years old and beyond (age 110 or older). Hence, to reduce the dimension of the forecasting problem and reasonably fit the data to the stochastic projection models, mortality rates were computed for the following 21 age groups: age 0, ages 1–4, ages 5–9,…, ages 90–94, ages 95 or older. The group rates were obtained by aggregating single year of age values. For instance, the resulting death rate for the 1–4 age group at time t was calculated as the ratio of total death counts for ages 1 through 4 over the sum of exposure-to- risk values for the same ages and time period.

Ex-post validation analysis involves using an initial portion of the available data to estimate a set of models that are then used to generate forecasts for the remaining time period. This way, it is possible to compare the models' projections to the actual observations to determine how well the models would have performed in the past. The design of any ex-post validation experiment always requires somewhat arbitrary decisions. For instance, the researcher must select the specific time frame and length over which the behavior of the models should be investigated, the fraction of the data used for estimation purposes, and the evaluation criteria employed to measure forecast performance. The particular objectives of the analysis shape these decisions and constrain the applicability of any conclusions. Table 1 lists the historical period of mortality data available for each of the 16 countries.6 The shortest sample corresponds to the United States (1959–2002) with 44 observations, while the longest sample belongs to Sweden (1751–2003), with 253 observations.

Table 1. Historical period covering mortality rates for 16 industrialized countries
Country Data
period
Total
observations
Longest
forecast
horizons
Total
forecasts
Austria 1947–2002 56 23 276
Belgium 1931–2002 72 23 276
Canada 1921–2002 82 23 276
Denmark 1835–2004 170 25 325
Finland 1878–2002 125 23 276
France 1899–2002 104 23 276
Germany 1956–2002 47 23 276
Italy 1872–2002 131 23 276
Japan 1950–2002 53 23 276
Netherlands 1850–2003 154 24 300
Norway 1846–2002 157 23 276
Spain 1908–2003 96 24 300
Sweden 1751–2003 253 24 300
Switzerland 1876–2004 129 25 325
United Kingdom 1841–2003 163 24 300
United States 1959–2002 44 23 276
Source: Human Mortality Database.

This paper uses all available data regardless of potential country-specific concerns about variation in quality, particularly when the estimated mortality rates date back more than one century. This decision is justified by treating the selected stochastic models as general algorithms, whose mechanically-generated forecasts should be tested under multiple scenarios. Furthermore, to make the generated forecasts comparable across countries, the initial jump-off year (the first period to be forecast) is fixed to 1980 in all cases. This particular choice was made based on the shortest available data set, by roughly adhering to two guiding principles: First, for each series there should be at least as many in-sample observations as the length of the forecast horizon. Second, the estimation sample per series should be at least as large as the total number of variables to be projected (21 age groups).

To minimize the impact of the selected jump-off year on the resulting projections, it is common practice in out-of-sample validation exercises to focus on the forecast error corresponding to fixed lead times, using different forecast origins. In other words, for every country, each model is fitted using all observations from the beginning of the series until 1979 and mortality projections generated from 1980 to the end of the data set. Then, the sample is expanded to include the next observation (1980). Upon reestimation, new forecasts are generated from 1981 to the end of the series. This process is repeated until the only period left to forecast is the last available observation. For instance, for each age group in the United States, the projections generated over the various jump-off years (1980, 1981,…, 2001) yield a set of 23 forecasts involving a 1-year horizon, 22 forecasts involving a 2-year period, and eventually a single forecast 23 years ahead. The fourth column of Table 1 shows the size of the longest forecast horizon (from 1980 to the end of each series). By design, the analysis centers on evaluating forecast performance over the short- to medium-range (23 to 25-year horizons in most cases), a fact that is determined by the choice of initial jump-off year, given the small sample sizes of some of the data. The last column in Table 1 presents the total number of projected observations per age group, over all forecast horizons.

Chart 1 displays three-dimensional surfaces, as well as contours of the logarithmic age profile of mortality corresponding to the United States and the United Kingdom. They serve to illustrate a number of features in all-cause mortality common to most nations. One characteristic of the data is the regularity in the shape of mortality over the ages. For any given period, mortality declines smoothly from birth until about ages 10–14, then increases almost linearly for the remaining ages until death. Moreover, in the second half of the twentieth century, the death rates experience a sharp increase associated with motor-vehicle fatalities in the 15–19 age group, often referred to as "the accident hump." Notice also how the surface for the United Kingdom appears far less smooth than the one corresponding to the United States. The former contains a much longer data sample (1841–2003) that includes spikes in mortality associated with the two world wars and the 1918 Spanish influenza pandemic.

Chart 1.
Surfaces and contours of the age profile of logarithmic mortality for the United States and the United Kingdom
Log mortality age profile (surface)
Line chart with tabular version below.
Show as table
Table equivalent for Chart 1a. Surfaces and contours of the age profile of logarithmic mortality for the United States and the United Kingdom—Log mortality age profile (surface)
Year 0 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–90 90–94 95 and
older
United States
1959 -3.6015 -6.8416 -7.6136 -7.6905 -6.9784 -6.6849 -6.6566 -6.4148 -6.0735 -5.6217 -5.1455 -4.6819 -4.2788 -3.8687 -3.4745 -3.0754 -2.644 -2.1996 -1.7665 -1.3965 -1.1108
1960 -3.6169 -6.8217 -7.6255 -7.7412 -6.9952 -6.7057 -6.6357 -6.4289 -6.0574 -5.6027 -5.1321 -4.6693 -4.2842 -3.8411 -3.4619 -3.0607 -2.6375 -2.1906 -1.7618 -1.3798 -1.07
1961 -3.6475 -6.8894 -7.6899 -7.7651 -7.0496 -6.7258 -6.6768 -6.4423 -6.077 -5.6275 -5.1637 -4.6968 -4.328 -3.8629 -3.4836 -3.1005 -2.6644 -2.2147 -1.7794 -1.4063 -1.0918
1962 -3.6603 -6.914 -7.6911 -7.7833 -7.0289 -6.7061 -6.6616 -6.4348 -6.047 -5.619 -5.1494 -4.6833 -4.3132 -3.8526 -3.4711 -3.0915 -2.6482 -2.2014 -1.7552 -1.3851 -1.0545
1963 -3.6619 -6.8919 -7.6986 -7.7947 -7.0096 -6.6883 -6.6292 -6.4176 -6.0282 -5.6073 -5.1345 -4.6762 -4.2911 -3.8352 -3.4628 -3.0746 -2.6325 -2.1886 -1.7404 -1.3624 -1.0272
1964 -3.6735 -6.9216 -7.7128 -7.7854 -6.9701 -6.6752 -6.6193 -6.381 -6.0235 -5.5995 -5.1481 -4.684 -4.3152 -3.8481 -3.4966 -3.1113 -2.6671 -2.229 -1.7875 -1.4094 -1.0892
1965 -3.7039 -6.9456 -7.7305 -7.8096 -6.9575 -6.667 -6.6172 -6.3899 -6.0219 -5.5978 -5.1447 -4.6837 -4.3152 -3.8544 -3.4914 -3.1171 -2.6619 -2.2277 -1.7813 -1.4056 -1.084
1966 -3.7379 -6.9419 -7.718 -7.7965 -6.8746 -6.6331 -6.598 -6.3772 -6.0239 -5.5864 -5.1347 -4.6835 -4.3009 -3.8655 -3.4859 -3.1024 -2.6618 -2.2283 -1.7882 -1.4018 -1.0823
1967 -3.7805 -7.0194 -7.7527 -7.8103 -6.8923 -6.6058 -6.5985 -6.39 -6.0096 -5.598 -5.1455 -4.7046 -4.3108 -3.8907 -3.5112 -3.1196 -2.6903 -2.2582 -1.8184 -1.4295 -1.1225
1968 -3.7996 -7.0166 -7.7175 -7.7833 -6.8298 -6.556 -6.546 -6.3596 -5.985 -5.5637 -5.1191 -4.6878 -4.2815 -3.8667 -3.4808 -3.0941 -2.665 -2.239 -1.7984 -1.3979 -1.0904
1969 -3.823 -7.04 -7.7272 -7.7902 -6.7829 -6.5193 -6.5343 -6.352 -5.9826 -5.5604 -5.1367 -4.7193 -4.2966 -3.9046 -3.5019 -3.1213 -2.696 -2.2642 -1.8282 -1.4335 -1.1075
1970 -3.8522 -7.0805 -7.7682 -7.8116 -6.8164 -6.5325 -6.5477 -6.3693 -6.0012 -5.5785 -5.1424 -4.7276 -4.2997 -3.9163 -3.5212 -3.134 -2.7144 -2.3008 -1.8732 -1.4792 -1.1574
1971 -3.9446 -7.105 -7.7735 -7.8224 -6.8097 -6.5306 -6.5552 -6.386 -6.0226 -5.6046 -5.1685 -4.755 -4.3247 -3.9352 -3.5575 -3.1453 -2.7249 -2.3112 -1.8655 -1.4728 -1.1345
1972 -4.017 -7.1213 -7.8045 -7.8134 -6.8078 -6.5349 -6.5589 -6.3952 -6.0484 -5.6145 -5.16 -4.7645 -4.3261 -3.9318 -3.5501 -3.1287 -2.7184 -2.3069 -1.8735 -1.483 -1.1236
1973 -4.0415 -7.1388 -7.7978 -7.8165 -6.8024 -6.5349 -6.5633 -6.4069 -6.0543 -5.6398 -5.1778 -4.7859 -4.3398 -3.9501 -3.5766 -3.147 -2.7397 -2.312 -1.8731 -1.4723 -1.1064
1974 -4.0759 -7.216 -7.8995 -7.8654 -6.8597 -6.5889 -6.6087 -6.4604 -6.1275 -5.6854 -5.22 -4.8157 -4.3935 -3.9822 -3.6174 -3.1719 -2.7929 -2.3507 -1.9074 -1.5096 -1.137
1975 -4.1254 -7.2659 -7.9571 -7.9444 -6.9056 -6.5987 -6.619 -6.5065 -6.1706 -5.7293 -5.272 -4.8466 -4.4326 -4.0171 -3.6608 -3.2099 -2.8372 -2.3994 -1.9747 -1.5693 -1.1955
1976 -4.1851 -7.2859 -7.979 -7.9805 -6.9482 -6.654 -6.6627 -6.5709 -6.226 -5.7674 -5.3006 -4.8662 -4.4572 -4.0245 -3.6762 -3.2365 -2.8506 -2.4073 -1.9644 -1.5456 -1.1597
1977 -4.2383 -7.3056 -8.0064 -7.9692 -6.9086 -6.6389 -6.6652 -6.5731 -6.2447 -5.796 -5.3335 -4.8864 -4.4881 -4.0496 -3.7006 -3.2589 -2.8876 -2.4371 -2.0087 -1.5917 -1.2138
1978 -4.2874 -7.2962 -8.0248 -7.9957 -6.9178 -6.6318 -6.6665 -6.5986 -6.2663 -5.8244 -5.3554 -4.9008 -4.5097 -4.0596 -3.7087 -3.2738 -2.9001 -2.4418 -2.006 -1.5865 -1.1919
1979 -4.3216 -7.3517 -8.074 -8.0563 -6.918 -6.6367 -6.646 -6.5979 -6.2929 -5.8668 -5.3963 -4.9338 -4.5369 -4.103 -3.732 -3.3125 -2.9288 -2.473 -2.0419 -1.6312 -1.2302
1980 -4.3556 -7.3642 -8.0884 -8.0894 -6.9217 -6.6278 -6.6394 -6.5874 -6.3044 -5.8806 -5.4058 -4.9422 -4.5217 -4.1094 -3.7075 -3.3042 -2.9091 -2.4476 -2.0109 -1.5858 -1.1757
1981 -4.4222 -7.4086 -8.1456 -8.1245 -7.0123 -6.6992 -6.6627 -6.5889 -6.3335 -5.9115 -5.4258 -4.9666 -4.5356 -4.1321 -3.728 -3.3282 -2.9425 -2.4736 -2.0353 -1.622 -1.2091
1982 -4.4517 -7.4494 -8.1706 -8.1735 -7.0642 -6.7674 -6.7352 -6.6347 -6.3736 -5.9702 -5.4737 -5.0015 -4.5621 -4.144 -3.7424 -3.343 -2.9454 -2.4939 -2.0612 -1.6576 -1.2359
1983 -4.4931 -7.4836 -8.2364 -8.2022 -7.1175 -6.8299 -6.7724 -6.6538 -6.4142 -5.9891 -5.5094 -5.0108 -4.5591 -4.1437 -3.7477 -3.335 -2.9377 -2.4872 -2.045 -1.6254 -1.2075
1984 -4.5149 -7.5547 -8.2799 -8.1701 -7.127 -6.8144 -6.7843 -6.6336 -6.3928 -5.9856 -5.5231 -5.0338 -4.5744 -4.1493 -3.7594 -3.3431 -2.9483 -2.5007 -2.0522 -1.6308 -1.2038
1985 -4.5171 -7.5649 -8.2946 -8.1781 -7.1267 -6.8325 -6.7757 -6.6047 -6.3642 -5.9856 -5.5254 -5.0411 -4.5798 -4.1514 -3.7645 -3.3412 -2.9443 -2.4948 -2.0404 -1.61 -1.1927
1986 -4.5543 -7.5521 -8.3391 -8.1636 -7.0532 -6.7731 -6.7151 -6.5263 -6.306 -5.9836 -5.5452 -5.0592 -4.6133 -4.1632 -3.7765 -3.3484 -2.9569 -2.5132 -2.0577 -1.621 -1.1944
1987 -4.57 -7.5595 -8.3073 -8.213 -7.0869 -6.8023 -6.7141 -6.5108 -6.2846 -5.9957 -5.5583 -5.0683 -4.6229 -4.1767 -3.7872 -3.3649 -2.9697 -2.5263 -2.0653 -1.6229 -1.1779
1988 -4.5735 -7.573 -8.3104 -8.1936 -7.0478 -6.7893 -6.697 -6.4936 -6.2525 -5.9867 -5.5602 -5.0927 -4.6226 -4.1828 -3.7926 -3.3748 -2.9719 -2.5181 -2.0545 -1.6023 -1.157
1989 -4.5804 -7.6043 -8.3318 -8.2026 -7.0598 -6.8262 -6.684 -6.4684 -6.2427 -5.9775 -5.576 -5.1157 -4.6442 -4.2117 -3.8168 -3.4063 -2.9962 -2.5539 -2.0955 -1.6427 -1.1731
1990 -4.6411 -7.6712 -8.4158 -8.2652 -7.0262 -6.8138 -6.6811 -6.4857 -6.2364 -5.996 -5.5865 -5.1415 -4.6729 -4.2297 -3.8337 -3.4299 -3.0167 -2.5784 -2.1208 -1.6619 -1.2055
1991 -4.6906 -7.6528 -8.4438 -8.2693 -7.0299 -6.8104 -6.7069 -6.4804 -6.23 -5.9656 -5.5947 -5.1622 -4.6847 -4.2466 -3.8454 -3.4425 -3.036 -2.5934 -2.1349 -1.6714 -1.2018
1992 -4.7396 -7.7403 -8.5036 -8.317 -7.0886 -6.8579 -6.7365 -6.4876 -6.2223 -5.9497 -5.6001 -5.1829 -4.713 -4.2696 -3.8596 -3.4588 -3.054 -2.6173 -2.1529 -1.6931 -1.2187
1993 -4.7592 -7.7127 -8.469 -8.2789 -7.062 -6.8305 -6.7245 -6.4528 -6.1934 -5.918 -5.6031 -5.1762 -4.715 -4.2606 -3.8504 -3.4502 -3.0334 -2.593 -2.1167 -1.6528 -1.1596
1994 -4.798 -7.7571 -8.5322 -8.3009 -7.0634 -6.8409 -6.739 -6.4436 -6.18 -5.905 -5.5938 -5.1803 -4.7409 -4.2772 -3.8715 -3.4632 -3.0562 -2.6044 -2.1349 -1.663 -1.1731
1995 -4.8538 -7.8137 -8.5445 -8.2901 -7.1054 -6.8595 -6.7673 -6.4554 -6.182 -5.8937 -5.5969 -5.1876 -4.7526 -4.2897 -3.8887 -3.468 -3.059 -2.6074 -2.1334 -1.6592 -1.1575
1996 -4.8831 -7.8754 -8.5661 -8.3575 -7.1633 -6.9152 -6.8636 -6.5788 -6.2836 -5.962 -5.6151 -5.2332 -4.7776 -4.3024 -3.9068 -3.4764 -3.0683 -2.6115 -2.1452 -1.6647 -1.162
1997 -4.8953 -7.9438 -8.6215 -8.3987 -7.2138 -6.9452 -6.9387 -6.7045 -6.3951 -6.0323 -5.6644 -5.2608 -4.8042 -4.3344 -3.9225 -3.4922 -3.0805 -2.6183 -2.1548 -1.665 -1.1684
1998 -4.889 -7.9831 -8.6661 -8.4463 -7.2694 -6.9851 -6.9938 -6.7564 -6.422 -6.0456 -5.6794 -5.2965 -4.8286 -4.362 -3.9316 -3.4966 -3.0885 -2.6117 -2.1579 -1.6749 -1.1688
1999 -4.913 -7.9808 -8.6865 -8.4981 -7.2849 -7.0037 -7.0088 -6.7825 -6.4317 -6.0466 -5.6663 -5.2966 -4.829 -4.3766 -3.9363 -3.508 -3.0778 -2.6069 -2.1317 -1.6564 -1.1491
2000 -4.9365 -8.0312 -8.7466 -8.507 -7.3075 -6.9839 -6.9939 -6.8059 -6.4401 -6.0394 -5.6552 -5.2923 -4.8438 -4.3949 -3.959 -3.5294 -3.0914 -2.6213 -2.1385 -1.6675 -1.164
2001 -4.9786 -8.0093 -8.7854 -8.5597 -7.3108 -6.9646 -6.9486 -6.7823 -6.4021 -6.0314 -5.6407 -5.276 -4.8607 -4.4151 -3.9798 -3.549 -3.1055 -2.638 -2.1445 -1.697 -1.1909
2002 -4.9619 -8.073 -8.7967 -8.5374 -7.2954 -6.963 -6.9602 -6.7893 -6.4254 -6.0181 -5.6339 -5.2728 -4.8658 -4.4287 -4.0016 -3.5606 -3.1163 -2.6435 -2.1448 -1.7063 -1.2167
United Kingdom
1841 -1.8788 -3.3091 -4.6622 -5.2491 -4.883 -4.7013 -4.6133 -4.605 -4.3986 -4.4061 -4.1325 -4.068 -3.5717 -3.5036 -2.9264 -2.6775 -2.1497 -1.8825 -1.5327 -1.2119 -0.9122
1842 -1.7929 -3.3075 -4.6986 -5.2711 -4.9109 -4.717 -4.6506 -4.6317 -4.4287 -4.399 -4.17 -4.0755 -3.6371 -3.4656 -2.9402 -2.6215 -2.1492 -1.8869 -1.5383 -1.2067 -0.8602
1843 -1.7941 -3.3495 -4.7605 -5.3264 -4.969 -4.7271 -4.6849 -4.6359 -4.4457 -4.3568 -4.2144 -4.0637 -3.7204 -3.4161 -3.0069 -2.5968 -2.202 -1.9063 -1.5578 -1.226 -0.8891
1844 -1.8067 -3.3307 -4.6907 -5.3161 -4.9735 -4.698 -4.6674 -4.6075 -4.4782 -4.3385 -4.2308 -4.0004 -3.7524 -3.3395 -3.0246 -2.5349 -2.1937 -1.8687 -1.5075 -1.1675 -0.8272
1845 -1.8588 -3.3687 -4.7917 -5.3526 -4.9638 -4.6815 -4.6909 -4.6245 -4.5126 -4.3277 -4.2821 -4.0003 -3.8263 -3.327 -3.0906 -2.544 -2.2397 -1.8938 -1.5365 -1.2035 -0.8783
1846 -1.6922 -3.2382 -4.784 -5.2508 -4.8946 -4.5978 -4.6046 -4.5418 -4.4666 -4.273 -4.2387 -3.9304 -3.7936 -3.2719 -3.0463 -2.4995 -2.1872 -1.8389 -1.4549 -1.0844 -0.6868
1847 -1.7284 -3.202 -4.6234 -5.1622 -4.8273 -4.5312 -4.5139 -4.4338 -4.3333 -4.144 -4.0898 -3.7941 -3.6154 -3.1502 -2.8765 -2.3952 -2.007 -1.672 -1.3171 -1.0005 -0.7133
1848 -1.7525 -3.2118 -4.5706 -5.191 -4.8937 -4.6025 -4.579 -4.5184 -4.4132 -4.2591 -4.18 -3.9324 -3.6972 -3.3124 -2.9593 -2.5638 -2.1244 -1.8114 -1.4527 -1.1178 -0.7992
1849 -1.7232 -3.2332 -4.4871 -5.0222 -4.7802 -4.4875 -4.3898 -4.2996 -4.1912 -4.0656 -3.9393 -3.7515 -3.501 -3.2292 -2.8353 -2.522 -2.0773 -1.7881 -1.4557 -1.1146 -0.7571
1850 -1.8363 -3.407 -4.8072 -5.333 -5.0109 -4.7897 -4.714 -4.6307 -4.4969 -4.383 -4.2214 -4.0505 -3.711 -3.4583 -2.9707 -2.6529 -2.1754 -1.8649 -1.522 -1.1827 -0.8403
1851 -1.7705 -3.3191 -4.7418 -5.283 -4.9431 -4.7271 -4.6663 -4.5969 -4.4515 -4.3455 -4.1719 -4.0277 -3.6768 -3.4433 -2.9524 -2.6275 -2.1801 -1.8631 -1.529 -1.1875 -0.8216
1852 -1.7338 -3.3123 -4.695 -5.2498 -4.9043 -4.698 -4.6387 -4.5794 -4.445 -4.3422 -4.1697 -4.0175 -3.6855 -3.4294 -3.0021 -2.6315 -2.1868 -1.8347 -1.5065 -1.183 -0.8601
1853 -1.7431 -3.3373 -4.7542 -5.2625 -4.8717 -4.6497 -4.5986 -4.5423 -4.411 -4.2868 -4.1158 -3.9427 -3.6513 -3.3388 -2.9481 -2.5283 -2.1053 -1.7369 -1.4128 -1.1068 -0.8107
1854 -1.7397 -3.1898 -4.6331 -5.1981 -4.8822 -4.6252 -4.5746 -4.5091 -4.3787 -4.2384 -4.0985 -3.9148 -3.6797 -3.3285 -2.9918 -2.5496 -2.1651 -1.7981 -1.4956 -1.2163 -0.9527
1855 -1.777 -3.341 -4.7711 -5.3056 -4.953 -4.6825 -4.657 -4.5865 -4.4454 -4.2837 -4.1728 -3.9349 -3.6884 -3.2595 -2.949 -2.4634 -2.0728 -1.6796 -1.3382 -1.032 -0.7526
1856 -1.8307 -3.4087 -4.8885 -5.3918 -5.0329 -4.7537 -4.7243 -4.6517 -4.5339 -4.3687 -4.2763 -4.0313 -3.8324 -3.3965 -3.1027 -2.6379 -2.2711 -1.8989 -1.5729 -1.2684 -0.984
1857 -1.7596 -3.3373 -4.833 -5.3551 -5.0162 -4.7317 -4.7051 -4.6365 -4.525 -4.3499 -4.2432 -3.9861 -3.7838 -3.3591 -3.0253 -2.5833 -2.176 -1.8087 -1.4766 -1.1613 -0.859
1858 -1.747 -3.1902 -4.5398 -5.2485 -4.9714 -4.7056 -4.6769 -4.6096 -4.4917 -4.3312 -4.2205 -3.9805 -3.7476 -3.3557 -2.9658 -2.5603 -2.1269 -1.7737 -1.4276 -1.0967 -0.777
1859 -1.7476 -3.2488 -4.6622 -5.2816 -5.0086 -4.7542 -4.6899 -4.6127 -4.4881 -4.3464 -4.202 -3.9857 -3.7283 -3.4074 -2.981 -2.6204 -2.1743 -1.8364 -1.5047 -1.1802 -0.8607
1860 -1.8342 -3.431 -4.9741 -5.4511 -5.0554 -4.8089 -4.7204 -4.6279 -4.4763 -4.3645 -4.2055 -4.003 -3.6671 -3.3896 -2.9129 -2.5759 -2.1088 -1.7719 -1.4469 -1.1297 -0.8122
1861 -1.7899 -3.3248 -4.9914 -5.4398 -5.0009 -4.8047 -4.7151 -4.6293 -4.4803 -4.3942 -4.2213 -4.0305 -3.6689 -3.4258 -2.9562 -2.622 -2.1564 -1.811 -1.4976 -1.208 -0.9548
1862 -1.8437 -3.3189 -4.8713 -5.4119 -5.0281 -4.8235 -4.7248 -4.6277 -4.4666 -4.373 -4.206 -4.0131 -3.6715 -3.4077 -2.9843 -2.627 -2.2027 -1.8505 -1.5361 -1.2358 -0.9558
1863 -1.8051 -3.141 -4.5706 -5.2903 -5.016 -4.7848 -4.7001 -4.6026 -4.4404 -4.3397 -4.2093 -4.0037 -3.6816 -3.3773 -3.0107 -2.6202 -2.2234 -1.8538 -1.5117 -1.1676 -0.8157
1864 -1.7768 -3.236 -4.6084 -5.3014 -4.9911 -4.7206 -4.6342 -4.5215 -4.3665 -4.2418 -4.1212 -3.8882 -3.5991 -3.2515 -2.9206 -2.4997 -2.14 -1.7729 -1.4422 -1.1076 -0.7582
1865 -1.7281 -3.3318 -4.8045 -5.3721 -5.0156 -4.7048 -4.6277 -4.5143 -4.3814 -4.2365 -4.1204 -3.868 -3.6323 -3.2663 -2.9765 -2.5199 -2.1586 -1.7721 -1.4476 -1.1272 -0.8051
1866 -1.7304 -3.3118 -4.8618 -5.3926 -5.014 -4.6936 -4.6029 -4.4673 -4.3424 -4.1922 -4.0992 -3.8433 -3.6335 -3.252 -2.9659 -2.5081 -2.1474 -1.767 -1.4431 -1.121 -0.7876
1867 -1.7686 -3.4742 -5.0474 -5.5364 -5.088 -4.7923 -4.7027 -4.5586 -4.4347 -4.2821 -4.1885 -3.9248 -3.6879 -3.2997 -2.9757 -2.5339 -2.1291 -1.7502 -1.4291 -1.1282 -0.8432
1868 -1.7459 -3.3567 -4.8723 -5.4708 -5.1122 -4.8183 -4.7149 -4.5775 -4.4643 -4.32 -4.201 -3.959 -3.7134 -3.3689 -3.0218 -2.6296 -2.2082 -1.8471 -1.5501 -1.2642 -0.9869
1869 -1.7635 -3.3334 -4.8234 -5.4383 -5.1422 -4.8602 -4.7234 -4.5727 -4.4425 -4.3049 -4.1552 -3.9396 -3.6618 -3.3407 -2.938 -2.5719 -2.1308 -1.7779 -1.4894 -1.2206 -0.9769
1870 -1.7377 -3.3091 -4.7553 -5.3933 -5.0885 -4.8421 -4.6974 -4.5516 -4.4095 -4.2976 -4.1338 -3.9439 -3.6123 -3.3272 -2.8996 -2.5609 -2.0959 -1.7367 -1.4435 -1.1757 -0.9491
1871 -1.7572 -3.3747 -4.8335 -5.4175 -5.0339 -4.7443 -4.6201 -4.516 -4.3674 -4.2693 -4.0999 -3.9411 -3.6063 -3.3375 -2.9056 -2.5798 -2.1393 -1.7819 -1.4835 -1.2013 -0.9449
1872 -1.7824 -3.4936 -4.9708 -5.5147 -5.0984 -4.8042 -4.6741 -4.5742 -4.4011 -4.2909 -4.1339 -3.9841 -3.6754 -3.3769 -2.9634 -2.6153 -2.2081 -1.8364 -1.5408 -1.2586 -0.9955
1873 -1.8056 -3.5664 -5.1145 -5.6361 -5.2145 -4.933 -4.7667 -4.6415 -4.4507 -4.3001 -4.127 -3.9436 -3.6569 -3.3035 -2.8979 -2.5198 -2.1501 -1.7673 -1.4463 -1.1351 -0.8158
1874 -1.7825 -3.4056 -4.8818 -5.5557 -5.2078 -4.8887 -4.7252 -4.5979 -4.403 -4.2346 -4.0934 -3.8907 -3.6302 -3.2538 -2.8973 -2.5134 -2.1762 -1.7876 -1.4715 -1.1616 -0.8429
1875 -1.748 -3.4553 -4.9777 -5.5822 -5.1869 -4.8821 -4.7242 -4.575 -4.3797 -4.1864 -4.0626 -3.8278 -3.5865 -3.183 -2.8562 -2.4397 -2.0776 -1.6496 -1.3251 -1.0198 -0.7335
1876 -1.802 -3.5358 -5.0671 -5.6327 -5.2579 -4.9413 -4.8033 -4.6461 -4.4562 -4.248 -4.1465 -3.9048 -3.6891 -3.2816 -2.9605 -2.5521 -2.1987 -1.7787 -1.4649 -1.1612 -0.8623
1877 -1.8984 -3.5647 -5.127 -5.633 -5.3171 -4.9924 -4.8285 -4.6513 -4.4835 -4.273 -4.161 -3.9106 -3.6878 -3.2944 -2.9431 -2.5538 -2.1897 -1.784 -1.4448 -1.1062 -0.7492
1878 -1.7791 -3.4231 -5.0502 -5.6119 -5.3114 -5.0148 -4.8656 -4.6714 -4.4891 -4.2796 -4.1519 -3.9018 -3.6375 -3.2809 -2.9062 -2.5259 -2.1141 -1.6963 -1.3502 -1.0153 -0.6834
1879 -1.9052 -3.5208 -5.1065 -5.686 -5.3595 -5.075 -4.8923 -4.674 -4.4961 -4.3021 -4.1289 -3.8782 -3.5671 -3.2461 -2.83 -2.4551 -2.0224 -1.6033 -1.2664 -0.9467 -0.6385
1880 -1.7985 -3.4049 -5.0803 -5.7062 -5.3736 -5.1102 -4.9596 -4.7481 -4.5447 -4.3755 -4.1856 -3.9703 -3.6305 -3.3649 -2.9256 -2.571 -2.1529 -1.7446 -1.4192 -1.0949 -0.7726
1881 -1.9587 -3.6727 -5.1575 -5.7351 -5.3746 -5.1089 -4.9287 -4.71 -4.4918 -4.3599 -4.1731 -3.9715 -3.6046 -3.3588 -2.9342 -2.5812 -2.1731 -1.7647 -1.4728 -1.1726 -0.871
1882 -1.8681 -3.5145 -5.083 -5.7369 -5.3573 -5.1326 -4.9278 -4.7185 -4.5018 -4.3793 -4.1793 -3.9655 -3.6238 -3.3597 -2.976 -2.6037 -2.2079 -1.7973 -1.5076 -1.2128 -0.9183
1883 -1.8962 -3.6174 -5.1023 -5.7159 -5.3189 -5.0902 -4.9066 -4.7171 -4.479 -4.3441 -4.1521 -3.9193 -3.6047 -3.2988 -2.9439 -2.5385 -2.1411 -1.7203 -1.4381 -1.1655 -0.9157
1884 -1.8183 -3.5825 -5.1268 -5.7407 -5.3558 -5.1195 -4.9281 -4.7435 -4.5084 -4.3565 -4.1682 -3.9238 -3.6634 -3.3277 -2.9905 -2.5644 -2.1879 -1.7753 -1.515 -1.28 -1.1012
1885 -1.8973 -3.6504 -5.2688 -5.8157 -5.4044 -5.1504 -4.9514 -4.756 -4.524 -4.3569 -4.1907 -3.9116 -3.6571 -3.2758 -2.9498 -2.5043 -2.1359 -1.7198 -1.4211 -1.1432 -0.8891
1886 -1.8037 -3.6379 -5.3407 -5.8385 -5.4326 -5.1902 -5.0157 -4.8112 -4.5792 -4.3791 -4.2148 -3.9062 -3.6561 -3.2581 -2.9278 -2.4858 -2.1113 -1.6923 -1.345 -1.0149 -0.6792
1887 -1.8443 -3.6276 -5.2844 -5.8362 -5.4749 -5.1986 -5.0447 -4.8353 -4.6026 -4.381 -4.2249 -3.9143 -3.6538 -3.2705 -2.9206 -2.514 -2.1311 -1.7247 -1.4046 -1.1065 -0.8231
1888 -1.8987 -3.7336 -5.3684 -5.8794 -5.5221 -5.2195 -5.0671 -4.8551 -4.6386 -4.4027 -4.2302 -3.9352 -3.6643 -3.3067 -2.919 -2.5432 -2.1479 -1.7456 -1.4086 -1.0926 -0.7933
1889 -1.8398 -3.6299 -5.3675 -5.9086 -5.555 -5.2799 -5.1192 -4.8895 -4.6696 -4.4329 -4.2539 -3.9815 -3.675 -3.3466 -2.9371 -2.5926 -2.1884 -1.7869 -1.4396 -1.1085 -0.7906
1890 -1.8216 -3.6015 -5.3107 -5.8571 -5.475 -5.2097 -5.017 -4.7685 -4.5374 -4.3013 -4.1002 -3.8565 -3.5198 -3.235 -2.8241 -2.5109 -2.1048 -1.7027 -1.3647 -1.0374 -0.7227
1891 -1.7947 -3.6118 -5.3532 -5.8982 -5.4679 -5.224 -5.0204 -4.7791 -4.5236 -4.2829 -4.042 -3.8111 -3.4459 -3.1512 -2.7275 -2.4108 -2.0183 -1.6089 -1.2682 -0.9341 -0.5938
1892 -1.8186 -3.6404 -5.3524 -5.9477 -5.5327 -5.3184 -5.0917 -4.8661 -4.5955 -4.3783 -4.1382 -3.927 -3.5636 -3.2217 -2.7995 -2.4522 -2.0816 -1.6529 -1.309 -0.9811 -0.6655
1893 -1.735 -3.675 -5.2562 -5.853 -5.4574 -5.2601 -5.0386 -4.834 -4.5544 -4.3547 -4.1308 -3.9379 -3.608 -3.2447 -2.8581 -2.502 -2.1737 -1.7414 -1.4081 -1.0677 -0.7094
1894 -1.9085 -3.79 -5.4241 -6.0278 -5.6086 -5.3625 -5.1598 -4.981 -4.7067 -4.4996 -4.2636 -4.0548 -3.7574 -3.373 -3.0106 -2.6344 -2.312 -1.8616 -1.5488 -1.2291 -0.9069
1895 -1.7182 -3.6959 -5.4605 -5.9996 -5.6088 -5.3602 -5.1571 -4.9612 -4.6901 -4.4621 -4.2144 -3.9469 -3.6429 -3.2259 -2.8854 -2.4834 -2.1299 -1.6414 -1.3258 -1.022 -0.7608
1896 -1.8185 -3.6888 -5.3829 -6.0415 -5.6843 -5.4178 -5.2333 -5.0146 -4.7457 -4.503 -4.2885 -4.017 -3.7604 -3.349 -3.0152 -2.6378 -2.3138 -1.8527 -1.5282 -1.1804 -0.8188
1897 -1.7569 -3.7757 -5.5096 -6.0454 -5.6777 -5.4153 -5.2354 -4.9951 -4.7486 -4.4933 -4.2889 -3.9929 -3.7366 -3.3346 -2.9775 -2.6069 -2.2393 -1.7791 -1.4731 -1.1485 -0.8174
1898 -1.7243 -3.7734 -5.5573 -6.0933 -5.7079 -5.4225 -5.2563 -5.0006 -4.757 -4.4913 -4.292 -3.99 -3.7196 -3.3372 -2.9511 -2.5981 -2.212 -1.77 -1.455 -1.1323 -0.8057
1899 -1.7045 -3.7995 -5.4787 -6.0314 -5.6803 -5.3915 -5.2231 -4.9535 -4.6983 -4.4216 -4.2073 -3.9158 -3.6325 -3.2826 -2.8678 -2.5232 -2.1252 -1.6972 -1.3927 -1.0985 -0.8146
1900 -1.7791 -3.7567 -5.4683 -6.0237 -5.6575 -5.379 -5.2118 -4.9542 -4.6949 -4.4234 -4.1841 -3.894 -3.5666 -3.2582 -2.8397 -2.5047 -2.1014 -1.6736 -1.3834 -1.106 -0.8473
1901 -1.7974 -3.8545 -5.5038 -6.0556 -5.7021 -5.4626 -5.2854 -5.0349 -4.7637 -4.5196 -4.2742 -4.0059 -3.6574 -3.3706 -2.9474 -2.5968 -2.2023 -1.7686 -1.487 -1.2241 -0.9948
1902 -1.9153 -3.8893 -5.4959 -6.0861 -5.7431 -5.4805 -5.2902 -5.065 -4.7771 -4.557 -4.2885 -4.0266 -3.6722 -3.3828 -2.9695 -2.5899 -2.2136 -1.7739 -1.4874 -1.2219 -0.9909
1903 -1.9386 -3.9822 -5.6281 -6.1741 -5.8182 -5.5785 -5.3567 -5.1332 -4.8467 -4.6384 -4.347 -4.082 -3.7371 -3.4324 -3.0306 -2.6245 -2.2679 -1.8338 -1.5547 -1.2998 -1.0869
1904 -1.8411 -3.8859 -5.6007 -6.143 -5.786 -5.5592 -5.3642 -5.158 -4.8584 -4.6494 -4.3469 -4.0724 -3.7069 -3.3841 -2.9965 -2.5712 -2.2025 -1.7644 -1.4704 -1.1982 -0.9808
1905 -1.9746 -4.0158 -5.6368 -6.1539 -5.8083 -5.5707 -5.3876 -5.1916 -4.9003 -4.6775 -4.3766 -4.0943 -3.7435 -3.406 -3.0302 -2.5994 -2.2324 -1.8044 -1.4963 -1.18 -0.8864
1906 -1.9339 -4.0273 -5.6117 -6.139 -5.7969 -5.5866 -5.4071 -5.191 -4.9147 -4.665 -4.3986 -4.0863 -3.7494 -3.3914 -3.0425 -2.61 -2.2158 -1.7899 -1.461 -1.1123 -0.792
1907 -2.0688 -4.0224 -5.6472 -6.179 -5.821 -5.604 -5.4267 -5.1951 -4.9391 -4.6512 -4.4131 -4.0765 -3.7489 -3.362 -3.0131 -2.5892 -2.1804 -1.7768 -1.4525 -1.0826 -0.726
1908 -2.0276 -4.1031 -5.6888 -6.202 -5.8638 -5.6109 -5.4468 -5.2307 -5.0025 -4.6947 -4.453 -4.1042 -3.7828 -3.3908 -3.0362 -2.6261 -2.1897 -1.7841 -1.4753 -1.1048 -0.7454
1909 -2.1503 -4.1112 -5.6753 -6.1778 -5.8368 -5.6239 -5.4636 -5.2393 -5.0206 -4.698 -4.4534 -4.098 -3.7924 -3.3682 -2.9919 -2.5852 -2.1589 -1.752 -1.4327 -1.0496 -0.5983
1910 -2.166 -4.2274 -5.7948 -6.2564 -5.923 -5.685 -5.5528 -5.3099 -5.0591 -4.806 -4.5267 -4.1866 -3.8529 -3.4618 -3.1003 -2.6558 -2.2441 -1.8827 -1.4861 -1.2006 -0.9066
1911 -1.9517 -4.0293 -5.6766 -6.1848 -5.8476 -5.6453 -5.4992 -5.2882 -5.0422 -4.7922 -4.4997 -4.1802 -3.8404 -3.454 -3.0979 -2.623 -2.238 -1.8553 -1.4686 -1.2143 -0.9149
1912 -2.2861 -4.2258 -5.7773 -6.2577 -5.8818 -5.6951 -5.5325 -5.3342 -5.0582 -4.8349 -4.5023 -4.2061 -3.846 -3.4679 -3.1051 -2.6112 -2.2325 -1.8504 -1.4572 -1.1912 -0.804
1913 -2.1563 -4.1987 -5.7523 -6.2389 -5.9243 -5.7007 -5.5516 -5.3379 -5.0666 -4.8329 -4.5003 -4.1939 -3.8462 -3.458 -3.1125 -2.6229 -2.2504 -1.8621 -1.4803 -1.1924 -0.9316
1914 -2.1938 -4.178 -5.6799 -6.1561 -5.2533 -4.9328 -5.0651 -5.1163 -4.9604 -4.785 -4.5006 -4.1548 -3.8497 -3.4491 -3.1023 -2.6112 -2.2382 -1.8567 -1.4599 -1.1432 -0.8304
1915 -2.1922 -3.9873 -5.5582 -6.059 -4.8576 -4.3181 -4.5523 -4.803 -4.7984 -4.7095 -4.4628 -4.1226 -3.7926 -3.3743 -3.028 -2.5112 -2.1041 -1.7227 -1.3124 -1.0356 -0.6694
1916 -2.3518 -4.355 -5.7247 -6.1159 -4.5687 -3.8934 -4.1373 -4.5164 -4.6802 -4.7056 -4.5372 -4.1958 -3.87 -3.4674 -3.0614 -2.5794 -2.1384 -1.7589 -1.3351 -1.046 -0.6978
1917 -2.3689 -4.2776 -5.7261 -6.1207 -4.3932 -3.6824 -3.8896 -4.2892 -4.544 -4.6485 -4.5476 -4.2428 -3.8966 -3.4938 -3.0879 -2.6189 -2.1547 -1.8005 -1.3693 -1.0708 -0.6983
1918 -2.2767 -3.8421 -5.1661 -5.5892 -4.2805 -3.5275 -3.5793 -3.8976 -4.2475 -4.421 -4.3587 -4.1078 -3.8661 -3.4911 -3.0841 -2.6731 -2.248 -1.9308 -1.5193 -1.2542 -0.8804
1919 -2.337 -4.3942 -5.6405 -6.0796 -5.6065 -5.2667 -5.0299 -5.0043 -4.9821 -4.8519 -4.6073 -4.2838 -3.9356 -3.5374 -3.108 -2.6651 -2.1596 -1.8082 -1.3702 -1.0722 -0.7213
1920 -2.3141 -4.4339 -5.7175 -6.2275 -5.8568 -5.6055 -5.4843 -5.3542 -5.1811 -4.9994 -4.7309 -4.3916 -4.0532 -3.6437 -3.2233 -2.7947 -2.3238 -1.9507 -1.5457 -1.256 -0.9382
1921 -2.4679 -4.5608 -5.8911 -6.3219 -5.8917 -5.6905 -5.5985 -5.4767 -5.256 -5.0436 -4.7696 -4.4259 -4.0592 -3.6547 -3.2281 -2.7692 -2.311 -1.9066 -1.4843 -1.189 -0.8655
1922 -2.545 -4.3817 -5.959 -6.3252 -5.9429 -5.6718 -5.5726 -5.4358 -5.2061 -5.012 -4.7185 -4.3755 -4.0011 -3.5767 -3.1359 -2.6714 -2.2105 -1.8218 -1.4268 -1.1196 -0.7616
1923 -2.6342 -4.6991 -6.0957 -6.414 -5.9808 -5.7591 -5.6638 -5.5578 -5.3276 -5.0915 -4.7828 -4.4673 -4.0771 -3.6597 -3.2203 -2.7725 -2.3157 -1.9093 -1.4776 -1.2212 -0.883
1924 -2.5599 -4.618 -6.0978 -6.3957 -5.974 -5.7292 -5.6648 -5.5401 -5.2928 -5.0616 -4.758 -4.4399 -4.0468 -3.6182 -3.1675 -2.6986 -2.2489 -1.8515 -1.4588 -1.1405 -0.8163
1925 -2.5535 -4.6346 -6.0111 -6.3933 -5.955 -5.7618 -5.6669 -5.5782 -5.3459 -5.0825 -4.7629 -4.4418 -4.0713 -3.6579 -3.1892 -2.7254 -2.246 -1.8525 -1.43 -1.1208 -0.769
1926 -2.6189 -4.7804 -6.0354 -6.5049 -6.0172 -5.8095 -5.7048 -5.6351 -5.3758 -5.1228 -4.8182 -4.4891 -4.1108 -3.6983 -3.2278 -2.7748 -2.2992 -1.9055 -1.4751 -1.1789 -0.8564
1927 -2.6473 -4.6901 -6.0612 -6.4635 -5.998 -5.7726 -5.6865 -5.5815 -5.3288 -5.0463 -4.7572 -4.4177 -4.07 -3.6347 -3.1764 -2.7004 -2.2117 -1.8226 -1.4019 -1.1247 -0.8323
1928 -2.6826 -4.8631 -6.0586 -6.4322 -5.9944 -5.7891 -5.7362 -5.6189 -5.4139 -5.1191 -4.8291 -4.4724 -4.1142 -3.6986 -3.2291 -2.771 -2.2976 -1.9083 -1.4871 -1.1771 -0.8658
1929 -2.5642 -4.5388 -5.9829 -6.4008 -5.9492 -5.7218 -5.6807 -5.5488 -5.3159 -5.0247 -4.7169 -4.3527 -4.0094 -3.573 -3.1087 -2.6231 -2.1259 -1.7508 -1.3258 -1.0362 -0.6665
1930 -2.7578 -4.9779 -6.0812 -6.4752 -6.0095 -5.8112 -5.7518 -5.6418 -5.4536 -5.1775 -4.8515 -4.4949 -4.1317 -3.7109 -3.2679 -2.7933 -2.3327 -1.9521 -1.5445 -1.2267 -0.8599
1931 -2.6758 -4.8862 -6.1477 -6.5228 -5.9925 -5.7767 -5.7381 -5.6521 -5.4293 -5.1478 -4.8106 -4.4644 -4.0934 -3.6705 -3.2051 -2.7289 -2.245 -1.842 -1.4123 -1.1134 -0.8112
1932 -2.7087 -4.9652 -6.182 -6.581 -6.0321 -5.8009 -5.7842 -5.6949 -5.4633 -5.226 -4.8549 -4.5139 -4.1211 -3.6967 -3.2265 -2.7455 -2.2633 -1.8616 -1.4183 -1.1125 -0.7365
1933 -2.7569 -5.0223 -6.1221 -6.5463 -6.0266 -5.7819 -5.7413 -5.6589 -5.4008 -5.1473 -4.7886 -4.4603 -4.0925 -3.6929 -3.2375 -2.7435 -2.2628 -1.8279 -1.4058 -1.0866 -0.777
1934 -2.7854 -5.0211 -6.0191 -6.532 -6.1094 -5.8606 -5.8238 -5.7253 -5.5126 -5.263 -4.8852 -4.5168 -4.1384 -3.7166 -3.2701 -2.779 -2.3298 -1.9342 -1.5138 -1.2238 -0.8869
1935 -2.8118 -5.2861 -6.1942 -6.6324 -6.1845 -5.9025 -5.852 -5.7727 -5.5399 -5.2806 -4.9078 -4.5375 -4.1545 -3.7165 -3.2717 -2.7925 -2.3187 -1.9117 -1.4988 -1.1662 -0.845
1936 -2.7829 -5.2075 -6.2201 -6.719 -6.2385 -5.916 -5.9067 -5.8327 -5.5624 -5.3011 -4.9215 -4.5073 -4.1274 -3.692 -3.2555 -2.7657 -2.2826 -1.8807 -1.4622 -1.1122 -0.7684
1937 -2.8033 -5.2803 -6.2818 -6.7452 -6.2289 -5.9227 -5.8969 -5.7942 -5.5582 -5.2666 -4.906 -4.4922 -4.1254 -3.6531 -3.2427 -2.7601 -2.2782 -1.8576 -1.4385 -1.0869 -0.7349
1938 -2.8934 -5.3875 -6.282 -6.7398 -6.2812 -5.9892 -5.9699 -5.8922 -5.6519 -5.3685 -4.9908 -4.5803 -4.1985 -3.7432 -3.3118 -2.8413 -2.3491 -1.9494 -1.5347 -1.1964 -0.8936
1939 -2.9514 -5.6552 -6.5153 -6.883 -6.3171 -6.0068 -5.9669 -5.9182 -5.6867 -5.3839 -4.9927 -4.5563 -4.16 -3.713 -3.2807 -2.7934 -2.2843 -1.8659 -1.4481 -1.1046 -0.7145
1940 -2.8494 -5.3285 -6.2333 -6.5729 -5.787 -5.2562 -5.4771 -5.5357 -5.4069 -5.1743 -4.8204 -4.4023 -4.008 -3.5853 -3.1671 -2.7077 -2.2031 -1.7843 -1.3609 -1.0271 -0.6085
1941 -2.8064 -5.2374 -6.1894 -6.5937 -5.8582 -5.4714 -5.6063 -5.6107 -5.4953 -5.2539 -4.9203 -4.5354 -4.1323 -3.7218 -3.2806 -2.8334 -2.3326 -1.9121 -1.4691 -1.1367 -0.7403
1942 -2.9155 -5.6781 -6.5065 -6.8669 -5.717 -5.2196 -5.4179 -5.5461 -5.5534 -5.3866 -5.0423 -4.6688 -4.2425 -3.8302 -3.3674 -2.9288 -2.4398 -2.0229 -1.5803 -1.2559 -0.871
1943 -2.9589 -5.708 -6.5715 -6.8702 -5.4788 -5.0439 -5.2249 -5.417 -5.5128 -5.3585 -5.0392 -4.6293 -4.2313 -3.8206 -3.3607 -2.9023 -2.41 -1.9664 -1.5064 -1.1638 -0.805
1944 -3.0215 -5.8697 -6.5851 -6.8582 -5.3334 -4.8954 -5.1362 -5.4118 -5.564 -5.3999 -5.0754 -4.6757 -4.2714 -3.8288 -3.3895 -2.9452 -2.4753 -2.027 -1.5837 -1.2488 -0.8463
1945 -3.0792 -5.9389 -6.7362 -6.9975 -5.2696 -4.5699 -4.8336 -5.2043 -5.4361 -5.4117 -5.1127 -4.7027 -4.287 -3.8368 -3.401 -2.9405 -2.4683 -2.0239 -1.5928 -1.2372 -0.9141
1946 -3.0785 -6.172 -7.0613 -7.189 -6.5609 -6.2974 -6.3063 -6.181 -5.9682 -5.6163 -5.1429 -4.735 -4.3022 -3.841 -3.4244 -2.9393 -2.4502 -2.0058 -1.5632 -1.1973 -0.8145
1947 -3.0831 -6.1454 -7.0187 -7.2635 -6.6163 -6.3289 -6.2704 -6.1766 -5.9758 -5.6284 -5.1598 -4.7238 -4.2937 -3.8317 -3.4008 -2.8959 -2.404 -1.953 -1.507 -1.1558 -0.7864
1948 -3.4006 -6.3401 -7.1953 -7.4232 -6.7624 -6.4688 -6.363 -6.2643 -6.0804 -5.7153 -5.2301 -4.8013 -4.3571 -3.8883 -3.4669 -2.9902 -2.5242 -2.0989 -1.6808 -1.3445 -0.9489
1949 -3.4402 -6.4573 -7.2837 -7.4809 -6.8553 -6.5004 -6.4179 -6.3387 -6.0765 -5.7155 -5.2242 -4.779 -4.3143 -3.8376 -3.3919 -2.8933 -2.4201 -1.982 -1.5307 -1.1769 -0.7972
1950 -3.5119 -6.6056 -7.3542 -7.6317 -6.9927 -6.6784 -6.5123 -6.3922 -6.1365 -5.7714 -5.2413 -4.7907 -4.332 -3.8476 -3.3943 -2.9141 -2.4116 -1.9709 -1.5252 -1.1694 -0.8498
1951 -3.4967 -6.5814 -7.5165 -7.6598 -7.1845 -6.7908 -6.6306 -6.4406 -6.1573 -5.7659 -5.2437 -4.7444 -4.2771 -3.7839 -3.3106 -2.837 -2.3291 -1.8818 -1.4441 -1.0996 -0.77
1952 -3.5718 -6.7416 -7.6142 -7.7712 -7.2764 -6.874 -6.7861 -6.5817 -6.2513 -5.8487 -5.3305 -4.8269 -4.3416 -3.8882 -3.4222 -2.957 -2.4614 -2.015 -1.5738 -1.2251 -0.8629
1953 -3.5928 -6.7426 -7.6294 -7.8229 -7.3839 -6.9824 -6.826 -6.6186 -6.2879 -5.8837 -5.3505 -4.8432 -4.3648 -3.8879 -3.4243 -2.9555 -2.4609 -2.0128 -1.5712 -1.237 -0.8609
1954 -3.6588 -6.9667 -7.8054 -7.9037 -7.399 -7.0484 -6.9068 -6.6386 -6.3267 -5.8774 -5.3792 -4.8478 -4.3789 -3.9067 -3.4401 -2.9651 -2.4867 -2.0279 -1.5961 -1.2259 -0.8571
1955 -3.6806 -6.9044 -7.7591 -7.8818 -7.384 -7.0648 -6.9352 -6.7195 -6.3889 -5.9158 -5.3874 -4.853 -4.381 -3.9037 -3.4285 -2.9461 -2.4538 -1.9907 -1.5375 -1.1928 -0.793
1956 -3.7044 -7.006 -7.8216 -8.011 -7.5014 -7.1426 -7.0046 -6.7524 -6.3935 -5.9259 -5.4038 -4.8933 -4.3799 -3.9043 -3.4382 -2.9521 -2.4573 -2.0063 -1.5393 -1.1887 -0.8299
1957 -3.7343 -6.9387 -7.8019 -7.8922 -7.3236 -7.1041 -6.9965 -6.7754 -6.3781 -5.9134 -5.411 -4.8762 -4.367 -3.894 -3.4419 -2.9741 -2.5158 -2.0731 -1.6376 -1.2695 -0.9074
1958 -3.7652 -7.0367 -7.8214 -8.0635 -7.4609 -7.1514 -7.0558 -6.8116 -6.4284 -5.9375 -5.4257 -4.8922 -4.3812 -3.9182 -3.4506 -2.9735 -2.4905 -2.0362 -1.5874 -1.219 -0.8552
1959 -3.7875 -7.0113 -7.8019 -8.0039 -7.3581 -7.1132 -7.0862 -6.8344 -6.3966 -5.9666 -5.4603 -4.9129 -4.3848 -3.9187 -3.4671 -2.984 -2.5015 -2.0636 -1.6087 -1.2502 -0.865
1960 -3.7885 -7.0512 -7.7384 -8.0423 -7.3869 -7.1297 -7.1164 -6.8762 -6.4182 -5.98 -5.4451 -4.9294 -4.4117 -3.9304 -3.4825 -3.0178 -2.5189 -2.0851 -1.6385 -1.2663 -0.9185
1961 -3.8086 -6.9902 -7.8182 -8.0278 -7.3443 -7.1215 -7.114 -6.845 -6.429 -5.9655 -5.4273 -4.9141 -4.3985 -3.898 -3.4445 -2.9701 -2.4913 -2.0512 -1.603 -1.2222 -0.8277
1962 -3.7953 -7.0633 -7.8697 -7.9959 -7.3436 -7.1356 -7.1425 -6.8616 -6.4214 -5.9751 -5.4258 -4.9248 -4.3932 -3.8921 -3.4457 -2.976 -2.5065 -2.0556 -1.5991 -1.2286 -0.872
1963 -3.8295 -7.0071 -7.8173 -8.0625 -7.3642 -7.1618 -7.1251 -6.8506 -6.4366 -5.9417 -5.3994 -4.9173 -4.3869 -3.8833 -3.4332 -2.9623 -2.4974 -2.0299 -1.5771 -1.211 -0.8614
1964 -3.8769 -7.1223 -7.8538 -8.0265 -7.2626 -7.1492 -7.118 -6.8826 -6.4611 -5.9246 -5.4434 -4.94 -4.4381 -3.9369 -3.5041 -3.0469 -2.6147 -2.1451 -1.7148 -1.3707 -0.986
1965 -3.9422 -7.1051 -7.8413 -7.9528 -7.251 -7.1863 -7.1315 -6.9134 -6.4438 -5.9276 -5.4474 -4.9255 -4.4411 -3.9297 -3.4834 -3.0332 -2.5983 -2.1379 -1.6982 -1.3271 -0.9716
1966 -3.949 -7.0799 -7.9089 -8.0002 -7.1975 -7.1992 -7.1603 -6.9038 -6.4781 -5.9565 -5.4461 -4.9149 -4.4338 -3.9358 -3.4698 -3.0233 -2.5703 -2.1169 -1.6783 -1.2978 -0.9314
1967 -3.9892 -7.1664 -7.9047 -7.9716 -7.2727 -7.2552 -7.2115 -6.9852 -6.5191 -5.9898 -5.4746 -4.9603 -4.4653 -3.9756 -3.5104 -3.0703 -2.6314 -2.1829 -1.7473 -1.3615 -0.9944
1968 -3.9912 -7.1231 -7.8942 -8.023 -7.3665 -7.3038 -7.2487 -6.9992 -6.5436 -5.9689 -5.4588 -4.9267 -4.4433 -3.95 -3.4774 -3.0222 -2.561 -2.1158 -1.6657 -1.2765 -0.9014
1969 -4.012 -7.1615 -7.9946 -8.1318 -7.3305 -7.2903 -7.2239 -6.9777 -6.5464 -5.9396 -5.3809 -4.919 -4.4254 -3.9246 -3.4409 -3.01 -2.5832 -2.1587 -1.7341 -1.3487 -0.9583
1970 -4.0021 -7.239 -7.9989 -8.123 -7.3633 -7.243 -7.2529 -6.9964 -6.5809 -5.9779 -5.4229 -4.9397 -4.4405 -3.964 -3.4795 -3.0393 -2.6019 -2.1692 -1.7385 -1.3457 -0.9448
1971 -4.0244 -7.2729 -7.9148 -8.098 -7.3426 -7.2831 -7.3042 -6.9941 -6.5743 -5.997 -5.4293 -4.9562 -4.4737 -3.9932 -3.5295 -3.0788 -2.6335 -2.1878 -1.7542 -1.3561 -0.9796
1972 -4.0762 -7.2076 -7.9582 -8.1717 -7.3651 -7.2582 -7.285 -7.0584 -6.5695 -6.0157 -5.4205 -4.9276 -4.4391 -3.9735 -3.4956 -3.0329 -2.5933 -2.157 -1.7177 -1.3256 -0.9403
1973 -4.1006 -7.2781 -8.0279 -8.189 -7.3546 -7.2125 -7.24 -7.0392 -6.6118 -6.0132 -5.4251 -4.9506 -4.4498 -4.005 -3.5193 -3.0586 -2.6131 -2.1623 -1.7274 -1.3329 -0.9327
1974 -4.1219 -7.3309 -8.0959 -8.1945 -7.3632 -7.2847 -7.3332 -7.0598 -6.6268 -6.0396 -5.4477 -4.9154 -4.4797 -4.0135 -3.5339 -3.0612 -2.6388 -2.1827 -1.7419 -1.3234 -0.9475
1975 -4.1678 -7.4074 -8.1509 -8.2556 -7.3866 -7.2528 -7.3055 -7.0735 -6.6466 -6.0777 -5.4826 -4.9488 -4.5079 -4.0192 -3.552 -3.0872 -2.6437 -2.1877 -1.7506 -1.3428 -0.9467
1976 -4.2531 -7.4964 -8.1449 -8.2564 -7.3852 -7.2848 -7.3052 -7.0983 -6.6469 -6.091 -5.5074 -4.9479 -4.5004 -4.0019 -3.5456 -3.0762 -2.6229 -2.163 -1.7097 -1.2943 -0.9014
1977 -4.2836 -7.4995 -8.234 -8.3221 -7.4333 -7.3083 -7.3231 -7.129 -6.6697 -6.1433 -5.5281 -4.9872 -4.5305 -4.0349 -3.5791 -3.1196 -2.6729 -2.2243 -1.7858 -1.3765 -0.9778
1978 -4.2968 -7.4802 -8.1665 -8.2706 -7.3619 -7.2504 -7.2799 -7.1019 -6.6332 -6.1386 -5.5441 -4.9676 -4.5103 -4.0291 -3.5733 -3.1188 -2.6653 -2.2256 -1.7851 -1.3841 -0.9822
1979 -4.3143 -7.5968 -8.2016 -8.3066 -7.4374 -7.3475 -7.2828 -7.1065 -6.6952 -6.1536 -5.5623 -4.9838 -4.4814 -4.0406 -3.5883 -3.1218 -2.6599 -2.2198 -1.7824 -1.3621 -0.9743
1980 -4.3842 -7.5823 -8.2684 -8.3655 -7.4321 -7.3621 -7.3442 -7.1619 -6.7223 -6.1943 -5.6132 -5.0359 -4.5177 -4.0651 -3.6133 -3.1541 -2.6959 -2.2574 -1.8096 -1.4006 -1.0096
1981 -4.5009 -7.6074 -8.3607 -8.3234 -7.4558 -7.429 -7.3609 -7.1567 -6.7979 -6.2069 -5.6351 -5.069 -4.5422 -4.1028 -3.6358 -3.1679 -2.7208 -2.2591 -1.8244 -1.4097 -1.0041
1982 -4.5244 -7.6702 -8.4612 -8.3447 -7.5137 -7.3996 -7.3799 -7.1439 -6.7945 -6.2576 -5.6828 -5.106 -4.5598 -4.1076 -3.628 -3.1706 -2.7221 -2.2637 -1.8215 -1.4115 -1.0195
1983 -4.5807 -7.7286 -8.4039 -8.3727 -7.528 -7.4728 -7.3825 -7.1827 -6.8042 -6.2873 -5.6877 -5.1391 -4.5841 -4.101 -3.6344 -3.1883 -2.7421 -2.2789 -1.8397 -1.4222 -1.0255
1984 -4.6473 -7.7623 -8.4788 -8.3857 -7.5813 -7.4494 -7.3777 -7.1942 -6.8368 -6.3271 -5.7229 -5.1726 -4.6151 -4.1013 -3.6784 -3.2217 -2.7773 -2.3225 -1.8902 -1.4599 -1.0573
1985 -4.653 -7.6996 -8.524 -8.3323 -7.6322 -7.4623 -7.4681 -7.2039 -6.8126 -6.309 -5.7464 -5.1835 -4.6265 -4.0986 -3.6708 -3.1963 -2.7426 -2.2791 -1.8347 -1.4017 -1.0096
1986 -4.6434 -7.7717 -8.5698 -8.5026 -7.5755 -7.4503 -7.4332 -7.1774 -6.8186 -6.3438 -5.7581 -5.2241 -4.6629 -4.1295 -3.6957 -3.2182 -2.7649 -2.3165 -1.868 -1.4433 -1.0457
1987 -4.6671 -7.7817 -8.6401 -8.4595 -7.592 -7.4374 -7.4505 -7.1316 -6.8321 -6.3535 -5.7939 -5.253 -4.6842 -4.1595 -3.723 -3.2443 -2.8067 -2.3599 -1.9264 -1.4982 -1.088
1988 -4.6844 -7.7816 -8.5526 -8.4763 -7.6114 -7.4275 -7.4397 -7.1379 -6.8232 -6.357 -5.8045 -5.2873 -4.7291 -4.1699 -3.7196 -3.2503 -2.8185 -2.3664 -1.9154 -1.4898 -1.0549
1989 -4.7661 -7.8061 -8.5509 -8.5661 -7.5555 -7.4198 -7.4172 -7.1925 -6.7923 -6.388 -5.8393 -5.317 -4.7608 -4.2063 -3.7089 -3.2824 -2.8173 -2.3578 -1.8993 -1.4627 -1.0336
1990 -4.8158 -7.8682 -8.6577 -8.5682 -7.5638 -7.3714 -7.3279 -7.1887 -6.7943 -6.3825 -5.8624 -5.3363 -4.7841 -4.2345 -3.7394 -3.3134 -2.8481 -2.3984 -1.9517 -1.5194 -1.0572
1991 -4.9017 -7.9127 -8.6028 -8.5728 -7.5739 -7.3932 -7.3873 -7.1701 -6.7949 -6.387 -5.8911 -5.347 -4.8311 -4.2732 -3.756 -3.3201 -2.8486 -2.3939 -1.9406 -1.4928 -1.0518
1992 -5.0219 -8.049 -8.7471 -8.6937 -7.7016 -7.4431 -7.3968 -7.1682 -6.7891 -6.3975 -5.9286 -5.3866 -4.8615 -4.3037 -3.7869 -3.3448 -2.8724 -2.4278 -1.9734 -1.5443 -1.0968
1993 -5.0695 -8.04 -8.8555 -8.5918 -7.7383 -7.4432 -7.3738 -7.1581 -6.8303 -6.394 -5.9453 -5.3795 -4.8684 -4.3108 -3.783 -3.3207 -2.8506 -2.3971 -1.9233 -1.4718 -1.013
1994 -5.0817 -8.1417 -8.8799 -8.6905 -7.814 -7.4482 -7.3633 -7.1097 -6.8331 -6.3832 -5.9696 -5.4379 -4.9305 -4.3759 -3.8383 -3.345 -2.9245 -2.4476 -1.9937 -1.5497 -1.088
1995 -5.0959 -8.2279 -8.891 -8.6679 -7.7491 -7.4331 -7.3394 -7.1167 -6.8267 -6.3817 -5.9387 -5.4325 -4.924 -4.392 -3.846 -3.3493 -2.9049 -2.4234 -1.9644 -1.4905 -1.0334
1996 -5.0901 -8.162 -9.0245 -8.7973 -7.7186 -7.4494 -7.3248 -7.1247 -6.8335 -6.4025 -5.9522 -5.4716 -4.9432 -4.4289 -3.892 -3.3797 -2.9442 -2.4426 -1.9812 -1.5216 -1.0536
1997 -5.1299 -8.2143 -8.9524 -8.7176 -7.7247 -7.3982 -7.3584 -7.1687 -6.8602 -6.4236 -5.9768 -5.4886 -4.9733 -4.468 -3.9246 -3.4055 -2.9648 -2.4547 -1.9901 -1.5223 -1.0648
1998 -5.1653 -8.1859 -9.0133 -8.8402 -7.8085 -7.4575 -7.3242 -7.1512 -6.8642 -6.4319 -5.9794 -5.5014 -4.9811 -4.4823 -3.9543 -3.4188 -2.9636 -2.4606 -2.0023 -1.5242 -1.0628
1999 -5.1469 -8.2003 -9.0841 -8.8336 -7.8118 -7.4713 -7.3591 -7.1693 -6.864 -6.4445 -5.9754 -5.5178 -5.0098 -4.504 -3.9803 -3.4455 -2.9455 -2.4935 -1.9956 -1.5111 -1.0431
2000 -5.192 -8.3825 -9.1064 -8.9007 -7.8418 -7.5128 -7.3556 -7.1678 -6.8501 -6.4599 -5.9866 -5.5308 -5.0561 -4.5458 -4.0378 -3.5077 -3.0085 -2.5444 -2.0362 -1.5666 -1.0834
2001 -5.2109 -8.3543 -9.0913 -8.9189 -7.852 -7.5063 -7.4292 -7.1554 -6.8841 -6.4884 -5.9971 -5.5365 -5.0853 -4.577 -4.0924 -3.5531 -3.0337 -2.5685 -2.0377 -1.5819 -1.0989
2002 -5.2459 -8.3992 -9.1251 -8.9027 -7.9088 -7.56 -7.4224 -7.1714 -6.8991 -6.4864 -5.9842 -5.5658 -5.1044 -4.5965 -4.117 -3.5788 -3.0421 -2.5769 -2.022 -1.5642 -1.0961
2003 -5.2111 -8.3214 -9.154 -8.9711 -7.9766 -7.5669 -7.4492 -7.1995 -6.9014 -6.4759 -6.0153 -5.5551 -5.1152 -4.6096 -4.1315 -3.606 -3.0606 -2.5574 -2.0126 -1.5505 -1.073
 
Log mortality age profile
Line chart with tabular version below.
Show as table
Table equivalent for Chart 1b. Surfaces and contours fo the age profile of logarithmic mortality for the United States and the United Kingdom—Log mortality age profile
Age group United States United Kingdom
1959 1972 2002 1900 1950 2003
0 -3.6015 -4.017 -4.9619 -1.7791 -3.5119 -5.2111
1–4 -6.8416 -7.1213 -8.073 -3.7567 -6.6056 -8.3214
4–9 -7.6136 -7.8045 -8.7967 -5.4683 -7.3542 -9.154
10–14 -7.6905 -7.8134 -8.5374 -6.0237 -7.6317 -8.9711
15–19 -6.9784 -6.8078 -7.2954 -5.6575 -6.9927 -7.9766
20–24 -6.6849 -6.5349 -6.963 -5.379 -6.6784 -7.5669
25–29 -6.6566 -6.5589 -6.9602 -5.2118 -6.5123 -7.4492
30–34 -6.4148 -6.3952 -6.7893 -4.9542 -6.3922 -7.1995
35–39 -6.0735 -6.0484 -6.4254 -4.6949 -6.1365 -6.9014
40–44 -5.6217 -5.6145 -6.0181 -4.4234 -5.7714 -6.4759
45–49 -5.1455 -5.16 -5.6339 -4.1841 -5.2413 -6.0153
50–54 -4.6819 -4.7645 -5.2728 -3.894 -4.7907 -5.5551
55–59 -4.2788 -4.3261 -4.8658 -3.5666 -4.332 -5.1152
60–64 -3.8687 -3.9318 -4.4287 -3.2582 -3.8476 -4.6096
65–69 -3.4745 -3.5501 -4.0016 -2.8397 -3.3943 -4.1315
70–74 -3.0754 -3.1287 -3.5606 -2.5047 -2.9141 -3.606
75–79 -2.644 -2.7184 -3.1163 -2.1014 -2.4116 -3.0606
80–84 -2.1996 -2.3069 -2.6435 -1.6736 -1.9709 -2.5574
85–89 -1.7665 -1.8735 -2.1448 -1.3834 -1.5252 -2.0126
90–94 -1.3965 -1.483 -1.7063 -1.106 -1.1694 -1.5505
95 or older -1.1108 -1.1236 -1.2167 -0.8473 -0.8498 -1.073
 
SOURCE: Author's calculations from the Human Mortality Database.

When modeling mortality, some researchers treat unusual data spikes as outliers by introducing dummy variables to remove their influence. An alternative view is that these observations represent rare but nonetheless potentially recurring shocks, and thus, their exclusion is likely to underestimate true uncertainty. The analysis in this paper subscribes to the latter practice, treating all observations equally. Yet a third possibility, as Lee and Carter (2000) suggest, is to incorporate additional uncertainty in every forecast period due to such events. For example, this can be accomplished by introducing a  1 / ( T 1 )  chance of a shock to the mortality index kt the size of the 1918 influenza pandemic, where T denotes the sample size. Nevertheless, the authors report that this practice has a negligible effect in the resulting projections.

A second characteristic in the age profile of all-cause mortality is a downward trend. That is, while mortality across the age groups maintains its regular shape, it also shifts downward over time. This can be clearly seen in the bottom graphs of Chart 1, which show the logarithm of the age mortality profile at three different points in time for the same two countries. It is evident that the death rates among the various age groups tend to move together. Thus, it is not surprising that a third feature of all-cause mortality involves a high degree of cross-correlation among the rates for different ages.

Table 2 presents the sample correlation between each age series and its immediately adjacent group for all 16 countries. For instance, the top entry in the column of Table 2 corresponding to Austria indicates that the estimated correlation between the age 0 and age 1–4 groups is 0.988. Similarly, the correlation between age groups 90–94 and 95 or older is 0.748 (the last entry in the same column). Evidently, mortality across the ages shows a high degree of positive association. Finally, Table 3 shows the sample standard deviation of the mortality rates corresponding to several age groups. Clearly, there is much more variation in mortality within the older age groups (particularly for the last series age 95 or older), as well as before age 1. Typically, the standard deviation decreases rapidly from a relatively high value at birth (age 0), until it reaches the 10–14 age group. Then, it increases steadily from ages 15–19 to the last series (age 95 or older), where it often attains its highest value.

Table 2. Sample correlation in mortality rates among adjacent age groups, by country
Age
Group
Austria Belgium Canada Denmark Finland France Germany Italy Japan Netherlands Norway Spain Sweden Switzerland United
Kingdom
United
States
0 0.988 0.969 0.986 0.903 0.962 0.980 0.994 0.963 0.943 0.968 0.963 0.940 0.928 0.987 0.957 0.990
1–4 0.977 0.979 0.992 0.988 0.990 0.986 0.951 0.979 0.971 0.984 0.990 0.984 0.970 0.994 0.982 0.991
5–9 0.985 0.988 0.996 0.981 0.954 0.992 0.996 0.974 0.993 0.989 0.951 0.990 0.973 0.985 0.995 0.994
10–14 0.894 0.985 0.989 0.973 0.854 0.798 0.913 0.977 0.988 0.982 0.957 0.993 0.963 0.981 0.885 0.804
15–19 0.925 0.932 0.996 0.980 0.845 0.942 0.944 0.994 0.994 0.992 0.991 0.990 0.982 0.986 0.963 0.978
20–24 0.983 0.992 0.995 0.993 0.973 0.990 0.979 0.996 0.999 0.994 0.995 0.991 0.989 0.996 0.981 0.938
25–29 0.974 0.983 0.996 0.993 0.982 0.986 0.979 0.999 0.997 0.997 0.988 0.995 0.989 0.994 0.960 0.867
30–34 0.963 0.991 0.997 0.992 0.988 0.968 0.984 0.990 0.996 0.997 0.987 0.986 0.985 0.990 0.976 0.935
35–39 0.968 0.994 0.989 0.993 0.975 0.958 0.964 0.994 0.997 0.998 0.993 0.993 0.987 0.994 0.991 0.945
40–44 0.966 0.990 0.980 0.993 0.982 0.978 0.967 0.987 0.994 0.997 0.989 0.984 0.994 0.994 0.993 0.981
45–49 0.956 0.982 0.984 0.992 0.984 0.991 0.955 0.982 0.994 0.997 0.986 0.990 0.994 0.996 0.992 0.988
50–54 0.964 0.984 0.994 0.993 0.985 0.996 0.964 0.969 0.994 0.996 0.986 0.976 0.993 0.997 0.989 0.993
55–59 0.978 0.991 0.993 0.992 0.989 0.997 0.973 0.955 0.995 0.997 0.986 0.975 0.993 0.997 0.982 0.991
60–64 0.984 0.996 0.989 0.985 0.986 0.998 0.977 0.964 0.997 0.995 0.986 0.982 0.976 0.996 0.984 0.996
65–69 0.990 0.996 0.995 0.985 0.990 0.998 0.986 0.931 0.994 0.994 0.984 0.980 0.989 0.996 0.980 0.994
70–74 0.990 0.995 0.995 0.970 0.990 0.998 0.992 0.931 0.993 0.993 0.965 0.963 0.979 0.992 0.982 0.991
75–79 0.996 0.993 0.995 0.973 0.985 0.997 0.996 0.929 0.996 0.989 0.871 0.966 0.963 0.994 0.983 0.997
80–84 0.992 0.992 0.995 0.963 0.953 0.997 0.996 0.945 0.996 0.985 0.921 0.961 0.923 0.990 0.968 0.997
85–89 0.978 0.980 0.975 0.839 0.750 0.992 0.994 0.937 0.996 0.953 0.801 0.849 0.842 0.955 0.977 0.994
90–94 0.748 0.885 0.913 0.699 0.646 0.980 0.986 0.890 0.978 0.793 0.646 0.877 0.639 0.777 0.918 0.881
SOURCE: Author's calculations.
Table 3. Sample standard deviation of mortality rates over different age groups, by country
Country Age 0 Age 5-9 Age 15-19 Age 30-34 Age 55-59 Age 75-79 Age 85-89 Age 95
or older
Austria 0.02176 0.00028 0.00028 0.00051 0.00223 0.01625 0.03080 0.03933
Belgium 0.03248 0.00072 0.00085 0.00132 0.00334 0.01863 0.03786 0.06341
Canada 0.03574 0.00079 0.00076 0.00117 0.00286 0.01662 0.03134 0.03085
Denmark 0.06913 0.00400 0.00217 0.00314 0.00584 0.02108 0.04059 0.08381
Finland 0.06111 0.00387 0.00290 0.00416 0.00532 0.02488 0.04735 0.11736
France 0.05575 0.00148 0.00322 0.00599 0.00537 0.03002 0.05755 0.07646
Germany 0.01125 0.00016 0.00019 0.00026 0.00159 0.01508 0.03139 0.04542
Italy 0.08209 0.00436 0.00266 0.00369 0.00590 0.03431 0.05122 0.08229
Japan 0.01580 0.00049 0.00044 0.00102 0.00374 0.02343 0.04499 0.06483
Netherlands 0.09767 0.00362 0.00231 0.00384 0.00669 0.02712 0.04830 0.08296
Norway 0.03911 0.00299 0.00241 0.00325 0.00454 0.01686 0.02235 0.04836
Spain 0.06603 0.00259 0.00234 0.00358 0.00587 0.03573 0.03440 0.03142
Sweden 0.08862 0.00571 0.00261 0.00444 0.00945 0.03316 0.04673 0.09039
Switzerland 0.06970 0.00189 0.00184 0.00328 0.00793 0.03667 0.06074 0.10513
United Kingdom 0.06679 0.00319 0.00270 0.00403 0.00698 0.02246 0.03632 0.04949
United States 0.00679 0.00011 0.00013 0.00018 0.00211 0.00949 0.02035 0.01630
SOURCE: Author's calculations.

Before turning to the ex-post validation results presented in the next section, it is important to discuss a number of findings in the literature that are relevant to this paper. Denton, Feavor, and Spencer (2005) use Canadian mortality data from 1926 to 2000 to produce long-term forecasts of life expectancy at birth and ages 65 and 80, based on the specification in equation (13) with p = 2 lags. The authors utilize a partially parametric method to generate random variation via a bootstrap procedure. They also implement a fully parametric approach by drawing from a multivariate normal disturbance process, much like the second model entertained in this paper. Although Denton, Feaver, and Spencer (2005) do not conduct an analysis of the out-of-sample forecast performance of these models, they do find the point forecasts generated by the fully parametric approach much closer to the projections of the Lee-Carter method than the official forecasts of the Canada Pension Plan.

Lee and Miller's (2001) ex-post validation analysis also focuses on life expectancy at birth e0, comparing actual and hypothetical forecast errors in the Lee-Carter model with those of the Social Security Administration (SSA).7 Using U.S. data from 1900 to 1998 (with 1921 as the initial jump-off year), the authors find that the empirical distribution of the actual forecast error matches well its hypothetical counterpart within a 10-year period, but deteriorates over time. Generally, the Lee-Carter model tends to underpredict life expectancy, although not by as much as the official SSA projections. In addition, the interval forecasts of e0 appear to be "too wide" up to the first 50 forecast horizons, while underestimating their hypothetical probability content for longer periods. Lee and Miller (2001) reach similar conclusions in more limited pseudo-forecast experiments using data from Japan, Canada, France, and Sweden.

Finally, Bell (1997) implements an evaluation of the short-term out-of-sample forecast behavior of multiple models using U.S. central death rates for white males and females from 1940 to 1991 (with 1981 as the initial jump-off year). Unlike Lee and Miller (2001), Bell reports forecast error over the entire age profile instead of relying on life expectancy as a single-valued measure of forecast performance. He finds that a univariate random-walk with drift fitted separately to each age group outperforms all of the parametric and nonparametric multivariate approaches considered. Only the Lee-Carter model with the type of bias correction discussed previously yields a similar forecast error to the univariate approach.

Out-of-Sample Forecast Performance

As previously mentioned, ex-post validation analysis provides a means to determine how well a set of models would have performed in the past, by comparing the forecasts generated by the models to the actual observations. This kind of analysis is not without its limitations, and should not be confused with forecasts that are generated in real time. The latter are produced prior to the forecast period, when the future outcome is truly uncertain. The former enjoy the advantage of perfect foresight, and are therefore based on an information set that was not available during the forecast period. Keeping these drawbacks in mind, ex-post validation is still a very valuable tool that cannot be replaced by in-sample goodness-of-fit measures. In particular, ex-post validation provides answers to "what if" type scenarios that are useful in specifying and calibrating models to be used for real time forecasting.

To compare forecast performance among several models, the following elements must be specified a priori: (1) the variables of interest to be projected; (2) the estimators used to measure these variables; and (3) an appropriate criterion to evaluate the variables' forecast performance. Clearly, with respect to the first point, the ultimate object of investigation is the 21 different age-specific mortality rates being modeled simultaneously. This paper looks at both the accuracy of the point projections produced by the models, and the ability of these projections to provide a realistic representation of forecast uncertainty. The means and medians of the generated forecast distributions are presented as two alternative point estimators. On the other hand, the capacity of the models to gauge forecast uncertainty is assessed by the behavior of their interval projections. To this aim, 90-percent confidence interval forecasts are also estimated using the 5th and 95th quantiles of the resulting forecast distributions.

The performance of the point estimates is evaluated using the traditional root mean squared error (RMSE) measure. Conversely, the performance of the interval projections is determined in terms of their empirical probability content (that is, the fraction of times the generated intervals actually include the observed ex-post mortality rates). If the interval forecasts enjoy an empirical probability content that is close to its hypothetical 90 percent level, it is likely that the model does a good job at accommodating the uncertainty associated with its point projections and can be used reliably for inference. However, coverage alone is only part of the picture. Since by design a fixed forecast interval between 0 and 1 covers the entire sample space, it is guaranteed to contain the ex-post mortality rates 100 percent of the time. Yet, such an interval has no practical use for inference, as it does not convey any information not already known a priori. Hence, the average width of the generated forecast intervals is also reported. Clearly, one unequivocal way to rank the interval estimates generated by several models involves the trade-off between probability coverage and interval width. In particular, an interval forecast that is narrower than all others and also enjoys greater empirical coverage should be the preferred choice.

Typically, when comparing multivariate forecast models, it is unusual for one model to outperform all others for every series projected at every forecast horizon. This is particularly likely in this application, given both the relatively large number of data sets and variables (21 age-specific mortality series for each of 16 samples). Therefore, to evaluate overall model performance, it is useful to adopt a single-valued measure that combines all the variables. One quantity to consider is life expectancy at birth  e 0 , t , defined as the average number of remaining years an individual born at time t is expected to live. Following the discussion in Wilmoth (2004), let  l a , t  denote the number of survivors at age a in year t

(21)  l a , t = l 0 , t i = 0 a 1 ( 1 m i , t ) ,

out of an initial population arbitrarily set to  l 0 , t = 100,000 , for a = 1,…,A. The person-years lived in the age interval [a, a + 1) is given by

(22)  L a , t = l a , t ( 1 w a , t ) l a , t m a , t ,

with  w a , t  representing the average number of years lived within the age interval.8 Then, period life expectancy at birth is defined as follows

(23)  e 0 , t = T 0 , t l 0 , t ,

where  T 0 , t  denotes the person-years remaining at birth

(24)  T 0 , t = a = 0 A L a , t .

Evidently, life expectancy at birth is a highly nonlinear function of all of the age-specific mortality rates that carries a natural interpretation. For this reason, it is often reported in practice as an overall summary measure of forecast performance, as in Lee and Miller's (2001) ex-post analysis. Unfortunately, such an aggregate quantity can be deceiving in that the forecast error associated with individual age groups could potentially cancel each other out in the computation of person-years remaining at birth, masking the extent of the forecast error experienced at particular ages.

Bell (1997) uses an alternative gauge of overall performance that looks at forecast error over the entire age profile. For instance, for the point projections, the RMSE corresponding to a particular forecast horizon is computed by averaging over the squared difference of observed and projected mortality at every age. This kind of measure is typical in multivariate time-series econometric applications. While not nearly as intuitive in its interpretation as life expectancy, it does not suffer from the potential problem that the forecast errors at different ages might cancel each other out. However, the measure is not without its drawbacks. In particular, suppose that a few of the series experience error that is disproportionately high relative to the remaining ages. Then, those few groups will largely determine the resulting total forecast error. A more robust measure of forecast error in the age profile might entail using a weighted average, with weights determined by the sample precision of each age series (that is, the inverse of its sample standard deviation). This more robust measure would define the importance of the error contributed by every age group as a function of how much variation mortality at that age displays in the sample, relative to the remaining series. Nevertheless, for the purposes of the forthcoming analysis, equal weights are assumed throughout.

In addition to both life expectancy at birth and the entire age profile as overall measures of forecast performance, the impact that mortality has on the program's future finances is an even more relevant criterion for a pay-as-you-go pension system. This impact is typically defined by the age distribution of the population, in terms of the old-age dependency ratio (the ratio of retired to working age population). Of course, to generate population forecasts, we would also need to model fertility and net migration, which is outside the scope of this paper. Nonetheless, it is still possible to evaluate the manner in which the age-specific mortality rates would actually enter into a population projection of the old-age dependency ratio, and thus, measure the effect that the mortality projections alone have on the program's finances. Specifically, recalling the previously defined number of survivors  l a , t  at age a in equation (21), the following dependency ratios implied by the individual age mortality rates are entertained:

(25)  δ 1 , t = i = 65 95 + l i , t i = 20 64 l i , t ,
(26)  δ 2 , t = i = 65 95 + l i , t + i = 0 19 l i , t i = 20 64 l i , t .

At a given point in time t, δ 1 , t  refers to the ratio of survivors at ages 65 or older over those ages 20 to 64. Alternatively, δ 2 , t  embodies a more general measure of dependency encompassing both the youngest and oldest ages in the numerator (from birth to age 19, as well as ages 65 or older).

For the purpose of illustration, Charts 2 through 4 display a number of projections generated at the initial jump-off year using the mortality data for the United States and United Kingdom. The top graphs in Chart 2 show actual mortality for the 10–14 age group, along with the median and 90-percent interval forecasts generated by the models from 1980 to the end of each series. The bottom graphs display forecasts corresponding to the 70–74 age group. The top of Chart 3 presents similar projections of life expectancy at birth, while the bottom graphs illustrate different measures of the dependency ratios defined above. In particular, the thickest solid lines in the bottom part of Chart 3 respectively represent the historical values of  δ 1 , t  and  δ 2 , t , based on the actual population figures from the Human Mortality Database. For instance, for the United States, the dependency ratios in the year 2000 were δ 1 , t = 0.212  and  δ 2 , t = 0.698 .9 By contrast, the remaining lines in the same graphs represent the dependency ratios based on the mortality rates alone, abstracting from fertility and net migration. These are the quantities relevant to the ex-post analysis in this paper. Their values for the United States in 2000 were δ 1 , t = 0.351  and  δ 2 , t = 0.817 . Chart 4 shows projections of these two dependency measures.

Chart 2.
Mortality projections for ages 10–14 and ages 70–74 for the United States (1980–2002) and the United Kingdom (1980–2003)
Line charts with tabular version below.
Show as table
Table equivalent for Chart 2. Mortality projections for ages 10–14 and ages 70–74 for the United States (1980–2002) and the United Kingdom (1980–2003)
Year United States United Kingdom
Actual Means Lower bound Upper bound Actual Means Lower bound Upper bound
Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1)
Mortality projections for ages 10–14
1900 . . . . . . . . . . . . . . . . . . . . . 0.0024207 . . . . . . . . . . . . . . . . . .
1901 . . . . . . . . . . . . . . . . . . . . . 0.0023447 . . . . . . . . . . . . . . . . . .
1902 . . . . . . . . . . . . . . . . . . . . . 0.0022742 . . . . . . . . . . . . . . . . . .
1903 . . . . . . . . . . . . . . . . . . . . . 0.0020826 . . . . . . . . . . . . . . . . . .
1904 . . . . . . . . . . . . . . . . . . . . . 0.0021485 . . . . . . . . . . . . . . . . . .
1905 . . . . . . . . . . . . . . . . . . . . . 0.0021253 . . . . . . . . . . . . . . . . . .
1906 . . . . . . . . . . . . . . . . . . . . . 0.002157 . . . . . . . . . . . . . . . . . .
1907 . . . . . . . . . . . . . . . . . . . . . 0.0020725 . . . . . . . . . . . . . . . . . .
1908 . . . . . . . . . . . . . . . . . . . . . 0.0020253 . . . . . . . . . . . . . . . . . .
1909 . . . . . . . . . . . . . . . . . . . . . 0.002075 . . . . . . . . . . . . . . . . . .
1910 . . . . . . . . . . . . . . . . . . . . . 0.0019181 . . . . . . . . . . . . . . . . . .
1911 . . . . . . . . . . . . . . . . . . . . . 0.0020605 . . . . . . . . . . . . . . . . . .
1912 . . . . . . . . . . . . . . . . . . . . . 0.0019157 . . . . . . . . . . . . . . . . . .
1913 . . . . . . . . . . . . . . . . . . . . . 0.001952 . . . . . . . . . . . . . . . . . .
1914 . . . . . . . . . . . . . . . . . . . . . 0.0021206 . . . . . . . . . . . . . . . . . .
1915 . . . . . . . . . . . . . . . . . . . . . 0.0023367 . . . . . . . . . . . . . . . . . .
1916 . . . . . . . . . . . . . . . . . . . . . 0.0022075 . . . . . . . . . . . . . . . . . .
1917 . . . . . . . . . . . . . . . . . . . . . 0.002197 . . . . . . . . . . . . . . . . . .
1918 . . . . . . . . . . . . . . . . . . . . . 0.0037381 . . . . . . . . . . . . . . . . . .
1919 . . . . . . . . . . . . . . . . . . . . . 0.0022892 . . . . . . . . . . . . . . . . . .
1920 . . . . . . . . . . . . . . . . . . . . . 0.0019744 . . . . . . . . . . . . . . . . . .
1921 . . . . . . . . . . . . . . . . . . . . . 0.0017965 . . . . . . . . . . . . . . . . . .
1922 . . . . . . . . . . . . . . . . . . . . . 0.0017906 . . . . . . . . . . . . . . . . . .
1923 . . . . . . . . . . . . . . . . . . . . . 0.0016385 . . . . . . . . . . . . . . . . . .
1924 . . . . . . . . . . . . . . . . . . . . . 0.0016688 . . . . . . . . . . . . . . . . . .
1925 . . . . . . . . . . . . . . . . . . . . . 0.0016727 . . . . . . . . . . . . . . . . . .
1926 . . . . . . . . . . . . . . . . . . . . . 0.0014961 . . . . . . . . . . . . . . . . . .
1927 . . . . . . . . . . . . . . . . . . . . . 0.0015593 . . . . . . . . . . . . . . . . . .
1928 . . . . . . . . . . . . . . . . . . . . . 0.0016089 . . . . . . . . . . . . . . . . . .
1929 . . . . . . . . . . . . . . . . . . . . . 0.0016602 . . . . . . . . . . . . . . . . . .
1930 . . . . . . . . . . . . . . . . . . . . . 0.0015413 . . . . . . . . . . . . . . . . . .
1931 . . . . . . . . . . . . . . . . . . . . . 0.0014696 . . . . . . . . . . . . . . . . . .
1932 . . . . . . . . . . . . . . . . . . . . . 0.0013864 . . . . . . . . . . . . . . . . . .
1933 . . . . . . . . . . . . . . . . . . . . . 0.0014354 . . . . . . . . . . . . . . . . . .
1934 . . . . . . . . . . . . . . . . . . . . . 0.0014561 . . . . . . . . . . . . . . . . . .
1935 . . . . . . . . . . . . . . . . . . . . . 0.001317 . . . . . . . . . . . . . . . . . .
1936 . . . . . . . . . . . . . . . . . . . . . 0.0012078 . . . . . . . . . . . . . . . . . .
1937 . . . . . . . . . . . . . . . . . . . . . 0.0011765 . . . . . . . . . . . . . . . . . .
1938 . . . . . . . . . . . . . . . . . . . . . 0.0011829 . . . . . . . . . . . . . . . . . .
1939 . . . . . . . . . . . . . . . . . . . . . 0.0010251 . . . . . . . . . . . . . . . . . .
1940 . . . . . . . . . . . . . . . . . . . . . 0.0013977 . . . . . . . . . . . . . . . . . .
1941 . . . . . . . . . . . . . . . . . . . . . 0.0013689 . . . . . . . . . . . . . . . . . .
1942 . . . . . . . . . . . . . . . . . . . . . 0.0010417 . . . . . . . . . . . . . . . . . .
1943 . . . . . . . . . . . . . . . . . . . . . 0.0010383 . . . . . . . . . . . . . . . . . .
1944 . . . . . . . . . . . . . . . . . . . . . 0.0010508 . . . . . . . . . . . . . . . . . .
1945 . . . . . . . . . . . . . . . . . . . . . 0.0009142 . . . . . . . . . . . . . . . . . .
1946 . . . . . . . . . . . . . . . . . . . . . 0.0007549 . . . . . . . . . . . . . . . . . .
1947 . . . . . . . . . . . . . . . . . . . . . 0.0007006 . . . . . . . . . . . . . . . . . .
1948 . . . . . . . . . . . . . . . . . . . . . 0.0005973 . . . . . . . . . . . . . . . . . .
1949 . . . . . . . . . . . . . . . . . . . . . 0.0005637 . . . . . . . . . . . . . . . . . .
1950 . . . . . . . . . . . . . . . . . . . . . 0.0004848 . . . . . . . . . . . . . . . . . .
1951 . . . . . . . . . . . . . . . . . . . . . 0.0004714 . . . . . . . . . . . . . . . . . .
1952 . . . . . . . . . . . . . . . . . . . . . 0.0004217 . . . . . . . . . . . . . . . . . .
1953 . . . . . . . . . . . . . . . . . . . . . 0.0004005 . . . . . . . . . . . . . . . . . .
1954 . . . . . . . . . . . . . . . . . . . . . 0.0003694 . . . . . . . . . . . . . . . . . .
1955 . . . . . . . . . . . . . . . . . . . . . 0.0003776 . . . . . . . . . . . . . . . . . .
1956 . . . . . . . . . . . . . . . . . . . . . 0.0003318 . . . . . . . . . . . . . . . . . .
1957 . . . . . . . . . . . . . . . . . . . . . 0.0003736 . . . . . . . . . . . . . . . . . .
1958 . . . . . . . . . . . . . . . . . . . . . 0.0003148 . . . . . . . . . . . . . . . . . .
1959 0.0004572 . . . . . . . . . . . . . . . . . . 0.0003342 . . . . . . . . . . . . . . . . . .
1960 0.0004345 . . . . . . . . . . . . . . . . . . 0.0003216 . . . . . . . . . . . . . . . . . .
1961 0.0004243 . . . . . . . . . . . . . . . . . . 0.0003263 . . . . . . . . . . . . . . . . . .
1962 0.0004166 . . . . . . . . . . . . . . . . . . 0.0003368 . . . . . . . . . . . . . . . . . .
1963 0.0004119 . . . . . . . . . . . . . . . . . . 0.0003151 . . . . . . . . . . . . . . . . . .
1964 0.0004158 . . . . . . . . . . . . . . . . . . 0.0003267 . . . . . . . . . . . . . . . . . .
1965 0.0004058 . . . . . . . . . . . . . . . . . . 0.0003517 . . . . . . . . . . . . . . . . . .
1966 0.0004112 . . . . . . . . . . . . . . . . . . 0.0003354 . . . . . . . . . . . . . . . . . .
1967 0.0004055 . . . . . . . . . . . . . . . . . . 0.0003451 . . . . . . . . . . . . . . . . . .
1968 0.0004166 . . . . . . . . . . . . . . . . . . 0.0003278 . . . . . . . . . . . . . . . . . .
1969 0.0004138 . . . . . . . . . . . . . . . . . . 0.000294 . . . . . . . . . . . . . . . . . .
1970 0.000405 . . . . . . . . . . . . . . . . . . 0.0002966 . . . . . . . . . . . . . . . . . .
1971 0.0004007 . . . . . . . . . . . . . . . . . . 0.0003041 . . . . . . . . . . . . . . . . . .
1972 0.0004043 . . . . . . . . . . . . . . . . . . 0.0002825 . . . . . . . . . . . . . . . . . .
1973 0.000403 . . . . . . . . . . . . . . . . . . 0.0002777 . . . . . . . . . . . . . . . . . .
1974 0.0003838 . . . . . . . . . . . . . . . . . . 0.0002762 . . . . . . . . . . . . . . . . . .
1975 0.0003546 . . . . . . . . . . . . . . . . . . 0.0002598 . . . . . . . . . . . . . . . . . .
1976 0.0003421 . . . . . . . . . . . . . . . . . . 0.0002596 . . . . . . . . . . . . . . . . . .
1977 0.0003459 . . . . . . . . . . . . . . . . . . 0.0002431 . . . . . . . . . . . . . . . . . .
1978 0.0003369 . . . . . . . . . . . . . . . . . . 0.0002559 . . . . . . . . . . . . . . . . . .
1979 0.0003171 . . . . . . . . . . . . . . . . . . 0.0002469 . . . . . . . . . . . . . . . . . .
1980 0.0003068 0.0003129 0.0003081 0.0003031 0.0002956 0.0003227 0.0003205 0.0002328 0.0002443 0.0002437 0.0001917 0.0002028 0.0003047 0.0002847
1981 0.0002962 0.0003088 0.0003021 0.0002953 0.0002825 0.0003226 0.000322 0.0002428 0.0002422 0.0002388 0.0001714 0.0001901 0.0003293 0.0002919
1982 0.000282 0.0003047 0.0002969 0.0002884 0.0002722 0.0003214 0.0003226 0.0002376 0.0002399 0.0002345 0.0001559 0.0001779 0.0003475 0.0002971
1983 0.0002741 0.0003005 0.000292 0.0002821 0.0002631 0.0003199 0.0003223 0.0002311 0.0002371 0.0002303 0.0001436 0.0001679 0.0003634 0.0003022
1984 0.000283 0.0002965 0.0002873 0.0002761 0.0002552 0.0003178 0.0003215 0.0002281 0.0002343 0.0002258 0.0001326 0.0001591 0.0003751 0.000304
1985 0.0002807 0.0002925 0.0002827 0.0002704 0.0002479 0.0003155 0.00032 0.0002406 0.0002322 0.0002216 0.0001233 0.000152 0.0003855 0.0003061
1986 0.0002848 0.0002886 0.0002782 0.0002649 0.0002411 0.0003135 0.0003184 0.0002029 0.0002297 0.0002173 0.0001148 0.0001439 0.0003981 0.000307
1987 0.0002711 0.0002848 0.0002738 0.0002597 0.0002346 0.0003111 0.0003163 0.0002119 0.0002276 0.0002136 0.0001074 0.0001376 0.0004075 0.0003071
1988 0.0002764 0.000281 0.0002694 0.0002552 0.0002281 0.0003083 0.0003141 0.0002083 0.0002254 0.0002093 0.0001022 0.0001312 0.000414 0.0003082
1989 0.000274 0.0002772 0.0002651 0.0002502 0.0002221 0.0003056 0.0003121 0.0001905 0.0002227 0.0002055 0.0000958 0.0001257 0.0004203 0.0003085
1990 0.0002573 0.0002735 0.0002609 0.0002456 0.0002166 0.0003029 0.0003097 0.0001901 0.0002205 0.0002017 0.0000904 0.0001204 0.0004263 0.0003084
1991 0.0002563 0.0002698 0.0002568 0.0002414 0.0002115 0.0003002 0.0003069 0.0001892 0.0002179 0.0001976 0.0000863 0.0001152 0.0004322 0.0003065
1992 0.0002443 0.0002661 0.0002527 0.0002369 0.0002066 0.0002973 0.0003044 0.0001676 0.0002153 0.000194 0.0000814 0.0001099 0.0004362 0.0003061
1993 0.0002538 0.0002626 0.0002486 0.0002325 0.0002018 0.0002946 0.0003017 0.0001856 0.0002132 0.0001905 0.0000768 0.0001055 0.0004417 0.0003051
1994 0.0002483 0.0002591 0.0002446 0.0002285 0.0001969 0.0002919 0.0002985 0.0001682 0.0002111 0.0001869 0.0000732 0.0001019 0.0004472 0.000303
1995 0.000251 0.0002557 0.0002408 0.0002245 0.0001922 0.0002891 0.0002959 0.000172 0.000209 0.0001834 0.0000696 0.0000969 0.0004513 0.0003018
1996 0.0002346 0.0002523 0.0002369 0.0002208 0.0001876 0.0002861 0.0002927 0.0001511 0.0002068 0.00018 0.0000668 0.0000936 0.0004527 0.0002993
1997 0.0002252 0.0002488 0.0002331 0.0002171 0.0001834 0.0002833 0.0002898 0.0001637 0.0002043 0.0001766 0.0000637 0.0000899 0.000457 0.0002983
1998 0.0002147 0.0002455 0.0002294 0.0002134 0.0001793 0.0002807 0.0002867 0.0001448 0.0002022 0.0001733 0.0000609 0.0000871 0.0004626 0.000296
1999 0.0002039 0.0002422 0.0002257 0.0002096 0.0001753 0.0002776 0.0002834 0.0001458 0.0001998 0.0001699 0.0000579 0.0000836 0.0004615 0.0002947
2000 0.000202 0.000239 0.0002221 0.0002061 0.0001713 0.0002747 0.0002805 0.0001363 0.0001977 0.0001667 0.0000553 0.0000804 0.0004628 0.0002912
2001 0.0001917 0.0002357 0.0002186 0.0002027 0.0001669 0.0002719 0.0002778 0.0001338 0.0001952 0.0001635 0.0000529 0.0000775 0.000465 0.0002903
2002 0.000196 0.0002326 0.000215 0.0001994 0.000163 0.0002688 0.0002745 0.000136 0.000193 0.0001602 0.0000508 0.000075 0.0004632 0.0002867
2003 . . . . . . . . . . . . . . . . . . . . . 0.000127 0.0001907 0.000157 0.0000483 0.0000725 0.0004652 0.0002836
Mortality projections for ages 70–74
1900 . . . . . . . . . . . . . . . . . . . . . 0.0816963 . . . . . . . . . . . . . . . . . .
1901 . . . . . . . . . . . . . . . . . . . . . 0.0745112 . . . . . . . . . . . . . . . . . .
1902 . . . . . . . . . . . . . . . . . . . . . 0.0750287 . . . . . . . . . . . . . . . . . .
1903 . . . . . . . . . . . . . . . . . . . . . 0.0724764 . . . . . . . . . . . . . . . . . .
1904 . . . . . . . . . . . . . . . . . . . . . 0.0764424 . . . . . . . . . . . . . . . . . .
1905 . . . . . . . . . . . . . . . . . . . . . 0.0743151 . . . . . . . . . . . . . . . . . .
1906 . . . . . . . . . . . . . . . . . . . . . 0.0735353 . . . . . . . . . . . . . . . . . .
1907 . . . . . . . . . . . . . . . . . . . . . 0.0750804 . . . . . . . . . . . . . . . . . .
1908 . . . . . . . . . . . . . . . . . . . . . 0.0723595 . . . . . . . . . . . . . . . . . .
1909 . . . . . . . . . . . . . . . . . . . . . 0.0753843 . . . . . . . . . . . . . . . . . .
1910 . . . . . . . . . . . . . . . . . . . . . 0.0702405 . . . . . . . . . . . . . . . . . .
1911 . . . . . . . . . . . . . . . . . . . . . 0.0725824 . . . . . . . . . . . . . . . . . .
1912 . . . . . . . . . . . . . . . . . . . . . 0.0734469 . . . . . . . . . . . . . . . . . .
1913 . . . . . . . . . . . . . . . . . . . . . 0.0725917 . . . . . . . . . . . . . . . . . .
1914 . . . . . . . . . . . . . . . . . . . . . 0.0734429 . . . . . . . . . . . . . . . . . .
1915 . . . . . . . . . . . . . . . . . . . . . 0.0811731 . . . . . . . . . . . . . . . . . .
1916 . . . . . . . . . . . . . . . . . . . . . 0.075818 . . . . . . . . . . . . . . . . . .
1917 . . . . . . . . . . . . . . . . . . . . . 0.0728859 . . . . . . . . . . . . . . . . . .
1918 . . . . . . . . . . . . . . . . . . . . . 0.0690371 . . . . . . . . . . . . . . . . . .
1919 . . . . . . . . . . . . . . . . . . . . . 0.0695904 . . . . . . . . . . . . . . . . . .
1920 . . . . . . . . . . . . . . . . . . . . . 0.0611317 . . . . . . . . . . . . . . . . . .
1921 . . . . . . . . . . . . . . . . . . . . . 0.06271 . . . . . . . . . . . . . . . . . .
1922 . . . . . . . . . . . . . . . . . . . . . 0.0691523 . . . . . . . . . . . . . . . . . .
1923 . . . . . . . . . . . . . . . . . . . . . 0.0625077 . . . . . . . . . . . . . . . . . .
1924 . . . . . . . . . . . . . . . . . . . . . 0.0673013 . . . . . . . . . . . . . . . . . .
1925 . . . . . . . . . . . . . . . . . . . . . 0.06552 . . . . . . . . . . . . . . . . . .
1926 . . . . . . . . . . . . . . . . . . . . . 0.0623597 . . . . . . . . . . . . . . . . . .
1927 . . . . . . . . . . . . . . . . . . . . . 0.0671793 . . . . . . . . . . . . . . . . . .
1928 . . . . . . . . . . . . . . . . . . . . . 0.0625994 . . . . . . . . . . . . . . . . . .
1929 . . . . . . . . . . . . . . . . . . . . . 0.0725803 . . . . . . . . . . . . . . . . . .
1930 . . . . . . . . . . . . . . . . . . . . . 0.0612188 . . . . . . . . . . . . . . . . . .
1931 . . . . . . . . . . . . . . . . . . . . . 0.0652902 . . . . . . . . . . . . . . . . . .
1932 . . . . . . . . . . . . . . . . . . . . . 0.0642132 . . . . . . . . . . . . . . . . . .
1933 . . . . . . . . . . . . . . . . . . . . . 0.0643448 . . . . . . . . . . . . . . . . . .
1934 . . . . . . . . . . . . . . . . . . . . . 0.0621016 . . . . . . . . . . . . . . . . . .
1935 . . . . . . . . . . . . . . . . . . . . . 0.0612652 . . . . . . . . . . . . . . . . . .
1936 . . . . . . . . . . . . . . . . . . . . . 0.0629291 . . . . . . . . . . . . . . . . . .
1937 . . . . . . . . . . . . . . . . . . . . . 0.0632869 . . . . . . . . . . . . . . . . . .
1938 . . . . . . . . . . . . . . . . . . . . . 0.058351 . . . . . . . . . . . . . . . . . .
1939 . . . . . . . . . . . . . . . . . . . . . 0.0612099 . . . . . . . . . . . . . . . . . .
1940 . . . . . . . . . . . . . . . . . . . . . 0.0666924 . . . . . . . . . . . . . . . . . .
1941 . . . . . . . . . . . . . . . . . . . . . 0.0588152 . . . . . . . . . . . . . . . . . .
1942 . . . . . . . . . . . . . . . . . . . . . 0.053459 . . . . . . . . . . . . . . . . . .
1943 . . . . . . . . . . . . . . . . . . . . . 0.0548969 . . . . . . . . . . . . . . . . . .
1944 . . . . . . . . . . . . . . . . . . . . . 0.0525937 . . . . . . . . . . . . . . . . . .
1945 . . . . . . . . . . . . . . . . . . . . . 0.0528416 . . . . . . . . . . . . . . . . . .
1946 . . . . . . . . . . . . . . . . . . . . . 0.0529052 . . . . . . . . . . . . . . . . . .
1947 . . . . . . . . . . . . . . . . . . . . . 0.0552472 . . . . . . . . . . . . . . . . . .
1948 . . . . . . . . . . . . . . . . . . . . . 0.0502758 . . . . . . . . . . . . . . . . . .
1949 . . . . . . . . . . . . . . . . . . . . . 0.055392 . . . . . . . . . . . . . . . . . .
1950 . . . . . . . . . . . . . . . . . . . . . 0.0542527 . . . . . . . . . . . . . . . . . .
1951 . . . . . . . . . . . . . . . . . . . . . 0.0586028 . . . . . . . . . . . . . . . . . .
1952 . . . . . . . . . . . . . . . . . . . . . 0.0519738 . . . . . . . . . . . . . . . . . .
1953 . . . . . . . . . . . . . . . . . . . . . 0.0520523 . . . . . . . . . . . . . . . . . .
1954 . . . . . . . . . . . . . . . . . . . . . 0.0515529 . . . . . . . . . . . . . . . . . .
1955 . . . . . . . . . . . . . . . . . . . . . 0.0525442 . . . . . . . . . . . . . . . . . .
1956 . . . . . . . . . . . . . . . . . . . . . 0.0522306 . . . . . . . . . . . . . . . . . .
1957 . . . . . . . . . . . . . . . . . . . . . 0.0510936 . . . . . . . . . . . . . . . . . .
1958 . . . . . . . . . . . . . . . . . . . . . 0.0511233 . . . . . . . . . . . . . . . . . .
1959 0.0461719 . . . . . . . . . . . . . . . . . . 0.0505895 . . . . . . . . . . . . . . . . . .
1960 0.0468548 . . . . . . . . . . . . . . . . . . 0.0489102 . . . . . . . . . . . . . . . . . .
1961 0.0450284 . . . . . . . . . . . . . . . . . . 0.0512965 . . . . . . . . . . . . . . . . . .
1962 0.045433 . . . . . . . . . . . . . . . . . . 0.0509973 . . . . . . . . . . . . . . . . . .
1963 0.0462092 . . . . . . . . . . . . . . . . . . 0.0517019 . . . . . . . . . . . . . . . . . .
1964 0.044542 . . . . . . . . . . . . . . . . . . 0.047508 . . . . . . . . . . . . . . . . . .
1965 0.0442839 . . . . . . . . . . . . . . . . . . 0.0481592 . . . . . . . . . . . . . . . . . .
1966 0.0449404 . . . . . . . . . . . . . . . . . . 0.0486407 . . . . . . . . . . . . . . . . . .
1967 0.0441742 . . . . . . . . . . . . . . . . . . 0.046405 . . . . . . . . . . . . . . . . . .
1968 0.0453161 . . . . . . . . . . . . . . . . . . 0.0486946 . . . . . . . . . . . . . . . . . .
1969 0.0440993 . . . . . . . . . . . . . . . . . . 0.0492901 . . . . . . . . . . . . . . . . . .
1970 0.043543 . . . . . . . . . . . . . . . . . . 0.047866 . . . . . . . . . . . . . . . . . .
1971 0.0430527 . . . . . . . . . . . . . . . . . . 0.0460125 . . . . . . . . . . . . . . . . . .
1972 0.0437758 . . . . . . . . . . . . . . . . . . 0.048175 . . . . . . . . . . . . . . . . . .
1973 0.0429815 . . . . . . . . . . . . . . . . . . 0.0469552 . . . . . . . . . . . . . . . . . .
1974 0.0419247 . . . . . . . . . . . . . . . . . . 0.0468322 . . . . . . . . . . . . . . . . . .
1975 0.0403599 . . . . . . . . . . . . . . . . . . 0.0456282 . . . . . . . . . . . . . . . . . .
1976 0.0393011 . . . . . . . . . . . . . . . . . . 0.046132 . . . . . . . . . . . . . . . . . .
1977 0.0384311 . . . . . . . . . . . . . . . . . . 0.0441737 . . . . . . . . . . . . . . . . . .
1978 0.0378619 . . . . . . . . . . . . . . . . . . 0.0442123 . . . . . . . . . . . . . . . . . .
1979 0.0364247 . . . . . . . . . . . . . . . . . . 0.0440767 . . . . . . . . . . . . . . . . . .
1980 0.0367298 0.0360475 0.0361306 0.0351788 0.034978 0.0369226 0.0372816 0.0426767 0.0439246 0.0439991 0.0420326 0.0398524 0.0458543 0.0481447
1981 0.0358571 0.0356793 0.035651 0.0344774 0.0341793 0.0369121 0.0371653 0.0420935 0.0437845 0.0438746 0.0411545 0.0391112 0.0465286 0.0487683
1982 0.0353292 0.0353142 0.0351988 0.0338532 0.0334699 0.0368093 0.0369568 0.0419784 0.0436431 0.0437718 0.0404303 0.0381301 0.0470007 0.0496449
1983 0.0356132 0.0349421 0.0347554 0.0332818 0.0328187 0.0366726 0.0367637 0.0412412 0.0434783 0.0436657 0.0398083 0.0375107 0.0473983 0.050268
1984 0.0353271 0.0345756 0.0343193 0.0327322 0.0322034 0.0364857 0.0365118 0.0398872 0.0433179 0.0435481 0.0392219 0.036803 0.0476799 0.0508353
1985 0.0353956 0.0342199 0.0338896 0.0322107 0.0316127 0.0362837 0.0362519 0.0409132 0.043174 0.0434269 0.0386853 0.0361545 0.047925 0.0513754
1986 0.0351402 0.0338627 0.0334647 0.0317051 0.0310656 0.0361017 0.0359659 0.0400283 0.043019 0.0433219 0.0381726 0.0356729 0.0482165 0.0518323
1987 0.0345645 0.0335158 0.0330385 0.0312201 0.0305019 0.0358866 0.0356929 0.0389972 0.0428795 0.0432019 0.037694 0.0350882 0.0484275 0.0522774
1988 0.0342236 0.0331711 0.0326166 0.0308004 0.0299674 0.0356455 0.0353556 0.0387626 0.042737 0.0430808 0.0373477 0.0346118 0.0485724 0.0526241
1989 0.0331623 0.0328221 0.0322024 0.0303378 0.0294489 0.035403 0.035076 0.0375397 0.0425768 0.042997 0.0368983 0.0341742 0.0487103 0.0530628
1990 0.032391 0.0324814 0.0318069 0.0299001 0.02898 0.0351592 0.034769 0.0363912 0.0424282 0.0428569 0.0364934 0.03372 0.0488411 0.0532738
1991 0.0319857 0.0321424 0.0313979 0.0295076 0.0284773 0.0349151 0.0344407 0.0361483 0.042275 0.0427155 0.036179 0.0332384 0.0489674 0.0537261
1992 0.0314667 0.0318021 0.0310012 0.029081 0.0280097 0.0346563 0.0341166 0.0352667 0.042112 0.0426431 0.0357804 0.0329287 0.0490521 0.0539293
1993 0.0317406 0.0314728 0.0306134 0.0286658 0.0275291 0.0344109 0.0338498 0.0361278 0.0419672 0.0425066 0.0353977 0.0323742 0.0491668 0.0543318
1994 0.0313307 0.0311501 0.0302331 0.0282827 0.0271315 0.0341674 0.0335148 0.0352611 0.04183 0.0424206 0.0350774 0.0320004 0.049282 0.0545508
1995 0.031179 0.0308289 0.0298581 0.027897 0.0266721 0.0339134 0.0332583 0.03511 0.0416889 0.0423114 0.0347429 0.0315927 0.0493653 0.0547197
1996 0.030918 0.03051 0.0294798 0.0275475 0.0262684 0.0336405 0.0329104 0.034058 0.0415459 0.0421898 0.0344811 0.0313569 0.0493939 0.0548686
1997 0.0304351 0.0301894 0.029107 0.0271831 0.0258186 0.0333927 0.0326233 0.0331901 0.0413909 0.042064 0.0341775 0.0309142 0.0494836 0.0551301
1998 0.0303015 0.0298772 0.0287438 0.0268274 0.0254172 0.0331548 0.0322937 0.0327514 0.0412489 0.0419755 0.0338857 0.0306393 0.0495953 0.0554585
1999 0.0299566 0.0295652 0.0283827 0.0264634 0.0250394 0.0328692 0.0319924 0.0318893 0.0410996 0.0418846 0.0335666 0.0303119 0.0495731 0.0557305
2000 0.0293229 0.0292584 0.0280223 0.0261179 0.0246348 0.0326041 0.0316658 0.0299647 0.0409561 0.0417675 0.0332816 0.0300506 0.0496001 0.0559626
2001 0.0287526 0.0289503 0.0276726 0.0257801 0.0242588 0.0323475 0.0313411 0.028635 0.0408016 0.0416216 0.0330064 0.0296909 0.0496448 0.0561353
2002 0.0284218 0.0286494 0.0273251 0.025456 0.023881 0.0320639 0.0309917 0.0279082 0.0406581 0.0415482 0.0327551 0.0294402 0.049609 0.0563574
2003 . . . . . . . . . . . . . . . . . . . . . 0.0271602 0.0405017 0.041398 0.032443 0.0290366 0.0496477 0.0563662
 
SOURCE: Author's calculations.
NOTE: AR(1) = Lag 1 autoregression.


Chart 3.
Life expectancy at birth and old-age dependency ratios for the United States and the United Kingdom
Life expectancy at birth e0
Line charts with tabular version below.
Show as table
Table equivalent for Chart 3a. Life expectancy at birth for the United States and the United Kingdom—Life expectancy at birth e0
Year United States United Kingdom
Actual Means Lower bound Upper bound Actual Means Lower bound Upper bound
Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1)
1900 . . . . . . . . . . . . . . . . . . . . . 46.32 . . . . . . . . . . . . . . . . . .
1901 . . . . . . . . . . . . . . . . . . . . . 47.91 . . . . . . . . . . . . . . . . . .
1902 . . . . . . . . . . . . . . . . . . . . . 49.08 . . . . . . . . . . . . . . . . . .
1903 . . . . . . . . . . . . . . . . . . . . . 50.43 . . . . . . . . . . . . . . . . . .
1904 . . . . . . . . . . . . . . . . . . . . . 49.11 . . . . . . . . . . . . . . . . . .
1905 . . . . . . . . . . . . . . . . . . . . . 50.86 . . . . . . . . . . . . . . . . . .
1906 . . . . . . . . . . . . . . . . . . . . . 50.58 . . . . . . . . . . . . . . . . . .
1907 . . . . . . . . . . . . . . . . . . . . . 51.44 . . . . . . . . . . . . . . . . . .
1908 . . . . . . . . . . . . . . . . . . . . . 51.84 . . . . . . . . . . . . . . . . . .
1909 . . . . . . . . . . . . . . . . . . . . . 52.52 . . . . . . . . . . . . . . . . . .
1910 . . . . . . . . . . . . . . . . . . . . . 53.99 . . . . . . . . . . . . . . . . . .
1911 . . . . . . . . . . . . . . . . . . . . . 51.54 . . . . . . . . . . . . . . . . . .
1912 . . . . . . . . . . . . . . . . . . . . . 54.55 . . . . . . . . . . . . . . . . . .
1913 . . . . . . . . . . . . . . . . . . . . . 53.83 . . . . . . . . . . . . . . . . . .
1914 . . . . . . . . . . . . . . . . . . . . . 51.99 . . . . . . . . . . . . . . . . . .
1915 . . . . . . . . . . . . . . . . . . . . . 48.2 . . . . . . . . . . . . . . . . . .
1916 . . . . . . . . . . . . . . . . . . . . . 47.73 . . . . . . . . . . . . . . . . . .
1917 . . . . . . . . . . . . . . . . . . . . . 45.57 . . . . . . . . . . . . . . . . . .
1918 . . . . . . . . . . . . . . . . . . . . . 40.43 . . . . . . . . . . . . . . . . . .
1919 . . . . . . . . . . . . . . . . . . . . . 54.12 . . . . . . . . . . . . . . . . . .
1920 . . . . . . . . . . . . . . . . . . . . . 56.6 . . . . . . . . . . . . . . . . . .
1921 . . . . . . . . . . . . . . . . . . . . . 58.35 . . . . . . . . . . . . . . . . . .
1922 . . . . . . . . . . . . . . . . . . . . . 57.69 . . . . . . . . . . . . . . . . . .
1923 . . . . . . . . . . . . . . . . . . . . . 59.79 . . . . . . . . . . . . . . . . . .
1924 . . . . . . . . . . . . . . . . . . . . . 58.79 . . . . . . . . . . . . . . . . . .
1925 . . . . . . . . . . . . . . . . . . . . . 58.94 . . . . . . . . . . . . . . . . . .
1926 . . . . . . . . . . . . . . . . . . . . . 60.13 . . . . . . . . . . . . . . . . . .
1927 . . . . . . . . . . . . . . . . . . . . . 59.42 . . . . . . . . . . . . . . . . . .
1928 . . . . . . . . . . . . . . . . . . . . . 60.52 . . . . . . . . . . . . . . . . . .
1929 . . . . . . . . . . . . . . . . . . . . . 58.03 . . . . . . . . . . . . . . . . . .
1930 . . . . . . . . . . . . . . . . . . . . . 61.41 . . . . . . . . . . . . . . . . . .
1931 . . . . . . . . . . . . . . . . . . . . . 60.46 . . . . . . . . . . . . . . . . . .
1932 . . . . . . . . . . . . . . . . . . . . . 61.13 . . . . . . . . . . . . . . . . . .
1933 . . . . . . . . . . . . . . . . . . . . . 61.06 . . . . . . . . . . . . . . . . . .
1934 . . . . . . . . . . . . . . . . . . . . . 61.84 . . . . . . . . . . . . . . . . . .
1935 . . . . . . . . . . . . . . . . . . . . . 62.6 . . . . . . . . . . . . . . . . . .
1936 . . . . . . . . . . . . . . . . . . . . . 62.37 . . . . . . . . . . . . . . . . . .
1937 . . . . . . . . . . . . . . . . . . . . . 62.42 . . . . . . . . . . . . . . . . . .
1938 . . . . . . . . . . . . . . . . . . . . . 63.78 . . . . . . . . . . . . . . . . . .
1939 . . . . . . . . . . . . . . . . . . . . . 64.13 . . . . . . . . . . . . . . . . . .
1940 . . . . . . . . . . . . . . . . . . . . . 60.62 . . . . . . . . . . . . . . . . . .
1941 . . . . . . . . . . . . . . . . . . . . . 61.77 . . . . . . . . . . . . . . . . . .
1942 . . . . . . . . . . . . . . . . . . . . . 63.27 . . . . . . . . . . . . . . . . . .
1943 . . . . . . . . . . . . . . . . . . . . . 62.51 . . . . . . . . . . . . . . . . . .
1944 . . . . . . . . . . . . . . . . . . . . . 62.74 . . . . . . . . . . . . . . . . . .
1945 . . . . . . . . . . . . . . . . . . . . . 61.77 . . . . . . . . . . . . . . . . . .
1946 . . . . . . . . . . . . . . . . . . . . . 67.11 . . . . . . . . . . . . . . . . . .
1947 . . . . . . . . . . . . . . . . . . . . . 66.94 . . . . . . . . . . . . . . . . . .
1948 . . . . . . . . . . . . . . . . . . . . . 68.94 . . . . . . . . . . . . . . . . . .
1949 . . . . . . . . . . . . . . . . . . . . . 68.56 . . . . . . . . . . . . . . . . . .
1950 . . . . . . . . . . . . . . . . . . . . . 69.03 . . . . . . . . . . . . . . . . . .
1951 . . . . . . . . . . . . . . . . . . . . . 68.58 . . . . . . . . . . . . . . . . . .
1952 . . . . . . . . . . . . . . . . . . . . . 69.91 . . . . . . . . . . . . . . . . . .
1953 . . . . . . . . . . . . . . . . . . . . . 70.11 . . . . . . . . . . . . . . . . . .
1954 . . . . . . . . . . . . . . . . . . . . . 70.53 . . . . . . . . . . . . . . . . . .
1955 . . . . . . . . . . . . . . . . . . . . . 70.48 . . . . . . . . . . . . . . . . . .
1956 . . . . . . . . . . . . . . . . . . . . . 70.7 . . . . . . . . . . . . . . . . . .
1957 . . . . . . . . . . . . . . . . . . . . . 70.85 . . . . . . . . . . . . . . . . . .
1958 . . . . . . . . . . . . . . . . . . . . . 71.02 . . . . . . . . . . . . . . . . . .
1959 70 . . . . . . . . . . . . . . . . . . 71.14 . . . . . . . . . . . . . . . . . .
1960 69.91 . . . . . . . . . . . . . . . . . . 71.35 . . . . . . . . . . . . . . . . . .
1961 70.32 . . . . . . . . . . . . . . . . . . 71.08 . . . . . . . . . . . . . . . . . .
1962 70.21 . . . . . . . . . . . . . . . . . . 71.13 . . . . . . . . . . . . . . . . . .
1963 70.04 . . . . . . . . . . . . . . . . . . 71.06 . . . . . . . . . . . . . . . . . .
1964 70.33 . . . . . . . . . . . . . . . . . . 71.84 . . . . . . . . . . . . . . . . . .
1965 70.41 . . . . . . . . . . . . . . . . . . 71.83 . . . . . . . . . . . . . . . . . .
1966 70.43 . . . . . . . . . . . . . . . . . . 71.75 . . . . . . . . . . . . . . . . . .
1967 70.76 . . . . . . . . . . . . . . . . . . 72.33 . . . . . . . . . . . . . . . . . .
1968 70.42 . . . . . . . . . . . . . . . . . . 71.98 . . . . . . . . . . . . . . . . . .
1969 70.66 . . . . . . . . . . . . . . . . . . 71.95 . . . . . . . . . . . . . . . . . .
1970 70.92 . . . . . . . . . . . . . . . . . . 72.21 . . . . . . . . . . . . . . . . . .
1971 71.24 . . . . . . . . . . . . . . . . . . 72.51 . . . . . . . . . . . . . . . . . .
1972 71.34 . . . . . . . . . . . . . . . . . . 72.31 . . . . . . . . . . . . . . . . . .
1973 71.54 . . . . . . . . . . . . . . . . . . 72.54 . . . . . . . . . . . . . . . . . .
1974 72.08 . . . . . . . . . . . . . . . . . . 72.74 . . . . . . . . . . . . . . . . . .
1975 72.68 . . . . . . . . . . . . . . . . . . 72.98 . . . . . . . . . . . . . . . . . .
1976 72.99 . . . . . . . . . . . . . . . . . . 72.98 . . . . . . . . . . . . . . . . . .
1977 73.38 . . . . . . . . . . . . . . . . . . 73.47 . . . . . . . . . . . . . . . . . .
1978 73.58 . . . . . . . . . . . . . . . . . . 73.4 . . . . . . . . . . . . . . . . . .
1979 74.03 . . . . . . . . . . . . . . . . . . 73.51 . . . . . . . . . . . . . . . . . .
1980 73.93 73.7458606 73.7424645 73.3322964 73.3744012 74.1588641 74.1207725 73.93 73.1353627 73.1448765 72.1051362 72.1367773 74.1046041 74.2127779
1981 74.36 73.9214999 73.9482411 73.3372461 73.4238732 74.4962195 74.4761286 74.27 73.1962983 73.2174636 71.7233955 71.974905 74.5292525 74.4868189
1982 74.65 74.0964728 74.1412297 73.3855638 73.4926295 74.7991497 74.7914782 74.41 73.2582854 73.2849311 71.4504257 71.8042389 74.8709557 74.8188381
1983 74.72 74.2756519 74.3345326 73.4498358 73.5790698 75.0787815 75.0803481 74.64 73.3319261 73.3475689 71.2167245 71.6371386 75.1586427 75.050837
1984 74.82 74.4529684 74.5231223 73.5379033 73.6745313 75.3500606 75.3658531 75.04 73.4035214 73.414565 71.0490944 71.531685 75.4252055 75.2730263
1985 74.79 74.6260022 74.7099316 73.6332772 73.7716289 75.6096447 75.6257676 74.87 73.4659906 73.4802635 70.9016857 71.4297037 75.6653614 75.509256
1986 74.88 74.8006506 74.8936972 73.7194318 73.8883308 75.8634546 75.8847774 75.15 73.5339324 73.5472374 70.7245616 71.3306281 75.8916431 75.7097458
1987 75.02 74.9711474 75.080426 73.8213974 73.9954708 76.1090523 76.1509465 75.49 73.5941908 73.6098276 70.5950554 71.2340237 76.1001508 75.9307937
1988 75.04 75.1413792 75.2646897 73.9360401 74.1291725 76.323306 76.3938246 75.61 73.6562228 73.6777696 70.5055569 71.2079548 76.249494 76.108558
1989 75.33 75.3146478 75.4488433 74.0516681 74.2282228 76.5614048 76.632507 75.77 73.7273567 73.7355675 70.4199067 71.1321584 76.4413949 76.2676077
1990 75.62 75.4848105 75.626962 74.1682659 74.3615088 76.7887194 76.8991415 76.09 73.7920407 73.8039585 70.3381861 71.0792051 76.6125357 76.4426103
1991 75.83 75.6550589 75.809569 74.2853486 74.4845579 76.994211 77.1349353 76.25 73.8599667 73.8753563 70.2589202 71.0311574 76.7443852 76.6312971
1992 76.11 75.8269665 75.9911667 74.4099229 74.6207454 77.2194189 77.370641 76.67 73.9315759 73.9308582 70.2055627 70.9463259 76.9101668 76.8024397
1993 75.86 75.9943969 76.1702346 74.5283676 74.7443354 77.4406055 77.5896512 76.56 73.9937902 73.9991874 70.1329906 70.9205528 77.0680069 76.9847729
1994 76.03 76.1592998 76.3469464 74.6463273 74.870888 77.6464759 77.8047289 77.1 74.0532974 74.0555367 70.0597993 70.8439722 77.1991197 77.118572
1995 76.11 76.3245189 76.5202437 74.7698077 75.0011522 77.8555064 78.0254908 76.99 74.1144059 74.1205818 70.0066054 70.8376 77.3351719 77.3311714
1996 76.46 76.4894902 76.6955717 74.90297 75.1178989 78.0465402 78.2454404 77.27 74.1763761 74.1787314 69.9883123 70.7904276 77.4410159 77.429593
1997 76.81 76.6562814 76.8705997 75.0243406 75.238009 78.2474305 78.4492198 77.51 74.2448536 74.2427378 69.9308317 70.7602873 77.5630892 77.5878031
1998 76.98 76.8197745 77.0431179 75.1412612 75.3644395 78.4451846 78.670305 77.66 74.3061821 74.3016275 69.858952 70.6916607 77.6798211 77.7350728
1999 76.97 76.984124 77.2152925 75.2821993 75.5037002 78.6493881 78.8907751 77.78 74.3719972 74.3548218 69.8732452 70.6731174 77.8067357 77.8569343
2000 77.12 77.1468763 77.3879826 75.4136216 75.6457343 78.8449413 79.1199582 78.26 74.4338208 74.4186347 69.8558424 70.6382197 77.9194859 78.0128717
2001 77.24 77.3113083 77.5576754 75.5413425 75.7676327 79.0378196 79.3336859 78.53 74.5017189 74.4850654 69.826991 70.6408922 78.0278583 78.1402039
2002 77.3 77.4730359 77.7283145 75.6830945 75.9034326 79.2244957 79.537497 78.67 74.5638709 74.5379541 69.8501511 70.6128084 78.1264205 78.2843643
2003 . . . . . . . . . . . . . . . . . . . . . 78.73 74.6317542 74.6038034 69.8251071 70.5976839 78.2482756 78.4084493
 
Old-age dependency ratios
Line charts with tabular version below.
Show as table
Table equivalent for Chart 3b. Old-age dependency ratios for the United States and the United Kingdom—Old-age dependency ratios
Year United States United Kingdom
δ1 (Actual
Population)
δ1 (Implied by
Mortality)
δ2 (Actual
Population)
δ2 (Implied by
Mortality)
δ1 (Actual
Population)
δ1 (Implied by
Mortality)
δ2 (Actual
Population)
δ2 (Implied by
Mortality)
1900 . . . . . . . . . . . . 0.0893 0.142 0.904 0.7171
1901 . . . . . . . . . . . . 0.0884 0.159 0.8916 0.7234
1902 . . . . . . . . . . . . 0.0885 0.1611 0.8811 0.7221
1903 . . . . . . . . . . . . 0.089 0.1708 0.873 0.7231
1904 . . . . . . . . . . . . 0.0898 0.1635 0.8672 0.7178
1905 . . . . . . . . . . . . 0.0899 0.1687 0.8593 0.7183
1906 . . . . . . . . . . . . 0.0908 0.1684 0.8529 0.7178
1907 . . . . . . . . . . . . 0.0918 0.165 0.8467 0.7129
1908 . . . . . . . . . . . . 0.0925 0.1697 0.8409 0.7138
1909 . . . . . . . . . . . . 0.093 0.1653 0.8364 0.7086
1910 . . . . . . . . . . . . 0.0934 0.1807 0.8312 0.7162
1911 . . . . . . . . . . . . 0.0947 0.1782 0.8246 0.719
1912 . . . . . . . . . . . . 0.0961 0.1789 0.818 0.7139
1913 . . . . . . . . . . . . 0.0973 0.1798 0.8167 0.7152
1914 . . . . . . . . . . . . 0.0977 0.1764 0.8107 0.738
1915 . . . . . . . . . . . . 0.0978 0.1599 0.8036 0.7656
1916 . . . . . . . . . . . . 0.0979 0.1663 0.7961 0.8138
1917 . . . . . . . . . . . . 0.0986 0.168 0.7895 0.857
1918 . . . . . . . . . . . . 0.0999 0.1639 0.7814 0.9359
1919 . . . . . . . . . . . . 0.1025 0.1814 0.7716 0.7304
1920 . . . . . . . . . . . . 0.1043 0.2052 0.7621 0.7327
1921 . . . . . . . . . . . . 0.1058 0.2046 0.7592 0.7258
1922 . . . . . . . . . . . . 0.1073 0.1903 0.7522 0.7142
1923 . . . . . . . . . . . . 0.1081 0.206 0.7436 0.7219
1924 . . . . . . . . . . . . 0.1096 0.197 0.7351 0.7149
1925 . . . . . . . . . . . . 0.1104 0.2 0.7245 0.7168
1926 . . . . . . . . . . . . 0.1121 0.208 0.7146 0.721
1927 . . . . . . . . . . . . 0.1145 0.1963 0.7053 0.7126
1928 . . . . . . . . . . . . 0.1163 0.208 0.694 0.7207
1929 . . . . . . . . . . . . 0.1187 0.1848 0.6841 0.7047
1930 . . . . . . . . . . . . 0.12 0.2134 0.673 0.7238
1931 . . . . . . . . . . . . 0.1231 0.202 0.6656 0.7141
1932 . . . . . . . . . . . . 0.1252 0.2061 0.657 0.7152
1933 . . . . . . . . . . . . 0.127 0.204 0.6487 0.7156
1934 . . . . . . . . . . . . 0.1291 0.2136 0.6387 0.7207
1935 . . . . . . . . . . . . 0.132 0.2139 0.6306 0.7181
1936 . . . . . . . . . . . . 0.1348 0.2097 0.625 0.713
1937 . . . . . . . . . . . . 0.1377 0.207 0.6229 0.7107
1938 . . . . . . . . . . . . 0.141 0.2213 0.6246 0.7205
1939 . . . . . . . . . . . . 0.1455 0.2134 0.6305 0.7113
1940 . . . . . . . . . . . . 0.148 0.1933 0.6273 0.714
1941 . . . . . . . . . . . . 0.1472 0.2148 0.6077 0.7276
1942 . . . . . . . . . . . . 0.1501 0.2329 0.5994 0.7462
1943 . . . . . . . . . . . . 0.1539 0.2277 0.5965 0.749
1944 . . . . . . . . . . . . 0.1576 0.2352 0.5984 0.7601
1945 . . . . . . . . . . . . 0.1616 0.2347 0.6024 0.7735
1946 . . . . . . . . . . . . 0.1661 0.2398 0.6084 0.726
1947 . . . . . . . . . . . . 0.1696 0.2344 0.6139 0.7204
1948 . . . . . . . . . . . . 0.1729 0.2519 0.6241 0.7338
1949 . . . . . . . . . . . . 0.1764 0.2369 0.6301 0.7183
1950 . . . . . . . . . . . . 0.1784 0.2381 0.6374 0.7173
1951 . . . . . . . . . . . . 0.1822 0.2255 0.6481 0.7041
1952 . . . . . . . . . . . . 0.1841 0.2455 0.6555 0.721
1953 . . . . . . . . . . . . 0.1871 0.2461 0.6632 0.7205
1954 . . . . . . . . . . . . 0.1899 0.2491 0.671 0.7226
1955 . . . . . . . . . . . . 0.1921 0.2459 0.6771 0.7189
1956 . . . . . . . . . . . . 0.1939 0.2473 0.6821 0.7193
1957 . . . . . . . . . . . . 0.1959 0.2519 0.688 0.7245
1958 . . . . . . . . . . . . 0.1986 0.251 0.6949 0.7226
1959 0.1731 0.2589 0.8885 0.7392 0.2006 0.2535 0.7016 0.725
1960 0.1765 0.2565 0.9089 0.737 0.2028 0.2572 0.7091 0.7283
1961 0.1796 0.2619 0.9251 0.7414 0.2054 0.2512 0.7194 0.7226
1962 0.1821 0.2593 0.9385 0.7392 0.2074 0.2518 0.7285 0.7231
1963 0.1837 0.2564 0.9457 0.7369 0.209 0.2494 0.736 0.7209
1964 0.1848 0.2622 0.9498 0.7428 0.2113 0.2649 0.7436 0.736
1965 0.1864 0.2621 0.955 0.7426 0.2153 0.2625 0.7522 0.7335
1966 0.1878 0.2615 0.9592 0.7425 0.2183 0.2601 0.7595 0.731
1967 0.1883 0.2661 0.9529 0.7468 0.2207 0.2695 0.7611 0.7393
1968 0.188 0.2611 0.9389 0.7429 0.2242 0.2606 0.7624 0.7304
1969 0.188 0.2663 0.9273 0.7481 0.2279 0.2603 0.7675 0.7307
1970 0.1881 0.2702 0.9163 0.7515 0.2322 0.265 0.7739 0.7348
1971 0.1883 0.2735 0.9057 0.7541 0.2365 0.271 0.78 0.7404
1972 0.1886 0.2727 0.8925 0.753 0.2411 0.2647 0.7868 0.7343
1973 0.1893 0.2758 0.877 0.7557 0.2452 0.2683 0.7926 0.7377
1974 0.1902 0.2837 0.8608 0.7619 0.2496 0.2708 0.7968 0.7397
1975 0.1916 0.2927 0.845 0.7696 0.2539 0.2737 0.8 0.7421
1976 0.1933 0.2953 0.8291 0.7711 0.2577 0.2707 0.8012 0.7389
1977 0.1945 0.3015 0.8119 0.7768 0.2605 0.2793 0.799 0.7467
1978 0.1959 0.3035 0.7953 0.7783 0.2638 0.2784 0.7963 0.7463
1979 0.1973 0.3104 0.7801 0.7845 0.2669 0.2787 0.7937 0.7461
1980 0.198 0.3071 0.7658 0.7811 0.2693 0.2849 0.7906 0.7514
1981 0.1987 0.3123 0.7515 0.7853 0.2706 0.2887 0.7849 0.7546
1982 0.1992 0.3161 0.7382 0.7879 0.27 0.2895 0.7756 0.7549
1983 0.2006 0.3152 0.7281 0.7863 0.267 0.2921 0.7619 0.757
1984 0.2017 0.3172 0.7184 0.7882 0.2628 0.2987 0.7446 0.7631
1985 0.2028 0.3168 0.7099 0.7878 0.263 0.2944 0.7337 0.7585
1986 0.2046 0.3195 0.7061 0.791 0.2663 0.2999 0.7292 0.7637
1987 0.2069 0.3218 0.7044 0.793 0.2687 0.3067 0.7245 0.7702
1988 0.2089 0.3219 0.704 0.7934 0.2702 0.308 0.7199 0.7713
1989 0.2108 0.3278 0.7041 0.799 0.2711 0.3095 0.7152 0.7724
1990 0.2127 0.3323 0.7045 0.8032 0.2712 0.316 0.7106 0.7788
1991 0.214 0.3351 0.7029 0.8059 0.2715 0.3177 0.7072 0.7801
1992 0.2145 0.339 0.7015 0.8093 0.2716 0.3236 0.7039 0.7854
1993 0.2158 0.3353 0.7038 0.8061 0.2717 0.3197 0.7014 0.7815
1994 0.2166 0.3386 0.7065 0.8093 0.2715 0.3304 0.7002 0.7917
1995 0.2169 0.3397 0.708 0.8102 0.2719 0.3284 0.7007 0.7899
1996 0.2172 0.3427 0.7091 0.8116 0.2721 0.3344 0.7016 0.7956
1997 0.2166 0.3463 0.7086 0.8138 0.2724 0.3387 0.7034 0.7995
1998 0.2151 0.3483 0.7053 0.815 0.2724 0.3408 0.7049 0.8014
1999 0.2133 0.3478 0.702 0.8143 0.2716 0.3432 0.7035 0.8036
2000 0.2117 0.3507 0.6976 0.8173 0.2701 0.353 0.6984 0.8131
2001 0.2101 0.3538 0.6906 0.8206 0.2696 0.3586 0.6934 0.8184
2002 0.2086 0.3558 0.6837 0.8226 0.2699 0.3607 0.6909 0.8202
2003 . . . . . . . . . . . . 0.2705 0.3618 0.6899 0.8212
 
SOURCE: Author's calculations.
NOTE: AR(1) = Lag 1 autoregression.


Chart 4.
Projections of old-age dependency ratios for the United States (1980–2002) and the United Kingdom
(1980–2003)
Line charts with tabular version below.
Show as table
Table equivalent for Chart 4. Projections of old-age dependency ratios for the United States (1980–2002) and the United Kingdom (1980–2003)
Year United States United Kingdom
Actual Means Lower bound Upper bound Actual Means Lower bound Upper bound
Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1) Lee-Carter AR(1)
Old-age dependency ratio δ1
1900 . . . . . . . . . . . . . . . . . . . . . 0.142 . . . . . . . . . . . . . . . . . .
1901 . . . . . . . . . . . . . . . . . . . . . 0.159 . . . . . . . . . . . . . . . . . .
1902 . . . . . . . . . . . . . . . . . . . . . 0.1611 . . . . . . . . . . . . . . . . . .
1903 . . . . . . . . . . . . . . . . . . . . . 0.1708 . . . . . . . . . . . . . . . . . .
1904 . . . . . . . . . . . . . . . . . . . . . 0.1635 . . . . . . . . . . . . . . . . . .
1905 . . . . . . . . . . . . . . . . . . . . . 0.1687 . . . . . . . . . . . . . . . . . .
1906 . . . . . . . . . . . . . . . . . . . . . 0.1684 . . . . . . . . . . . . . . . . . .
1907 . . . . . . . . . . . . . . . . . . . . . 0.165 . . . . . . . . . . . . . . . . . .
1908 . . . . . . . . . . . . . . . . . . . . . 0.1697 . . . . . . . . . . . . . . . . . .
1909 . . . . . . . . . . . . . . . . . . . . . 0.1653 . . . . . . . . . . . . . . . . . .
1910 . . . . . . . . . . . . . . . . . . . . . 0.1807 . . . . . . . . . . . . . . . . . .
1911 . . . . . . . . . . . . . . . . . . . . . 0.1782 . . . . . . . . . . . . . . . . . .
1912 . . . . . . . . . . . . . . . . . . . . . 0.1789 . . . . . . . . . . . . . . . . . .
1913 . . . . . . . . . . . . . . . . . . . . . 0.1798 . . . . . . . . . . . . . . . . . .
1914 . . . . . . . . . . . . . . . . . . . . . 0.1764 . . . . . . . . . . . . . . . . . .
1915 . . . . . . . . . . . . . . . . . . . . . 0.1599 . . . . . . . . . . . . . . . . . .
1916 . . . . . . . . . . . . . . . . . . . . . 0.1663 . . . . . . . . . . . . . . . . . .
1917 . . . . . . . . . . . . . . . . . . . . . 0.168 . . . . . . . . . . . . . . . . . .
1918 . . . . . . . . . . . . . . . . . . . . . 0.1639 . . . . . . . . . . . . . . . . . .
1919 . . . . . . . . . . . . . . . . . . . . . 0.1814 . . . . . . . . . . . . . . . . . .
1920 . . . . . . . . . . . . . . . . . . . . . 0.2052 . . . . . . . . . . . . . . . . . .
1921 . . . . . . . . . . . . . . . . . . . . . 0.2046 . . . . . . . . . . . . . . . . . .
1922 . . . . . . . . . . . . . . . . . . . . . 0.1903 . . . . . . . . . . . . . . . . . .
1923 . . . . . . . . . . . . . . . . . . . . . 0.206 . . . . . . . . . . . . . . . . . .
1924 . . . . . . . . . . . . . . . . . . . . . 0.197 . . . . . . . . . . . . . . . . . .
1925 . . . . . . . . . . . . . . . . . . . . . 0.2 . . . . . . . . . . . . . . . . . .
1926 . . . . . . . . . . . . . . . . . . . . . 0.208 . . . . . . . . . . . . . . . . . .
1927 . . . . . . . . . . . . . . . . . . . . . 0.1963 . . . . . . . . . . . . . . . . . .
1928 . . . . . . . . . . . . . . . . . . . . . 0.208 . . . . . . . . . . . . . . . . . .
1929 . . . . . . . . . . . . . . . . . . . . . 0.1848 . . . . . . . . . . . . . . . . . .
1930 . . . . . . . . . . . . . . . . . . . . . 0.2134 . . . . . . . . . . . . . . . . . .
1931 . . . . . . . . . . . . . . . . . . . . . 0.202 . . . . . . . . . . . . . . . . . .
1932 . . . . . . . . . . . . . . . . . . . . . 0.2061 . . . . . . . . . . . . . . . . . .
1933 . . . . . . . . . . . . . . . . . . . . . 0.204 . . . . . . . . . . . . . . . . . .
1934 . . . . . . . . . . . . . . . . . . . . . 0.2136 . . . . . . . . . . . . . . . . . .
1935 . . . . . . . . . . . . . . . . . . . . . 0.2139 . . . . . . . . . . . . . . . . . .
1936 . . . . . . . . . . . . . . . . . . . . . 0.2097 . . . . . . . . . . . . . . . . . .
1937 . . . . . . . . . . . . . . . . . . . . . 0.207 . . . . . . . . . . . . . . . . . .
1938 . . . . . . . . . . . . . . . . . . . . . 0.2213 . . . . . . . . . . . . . . . . . .
1939 . . . . . . . . . . . . . . . . . . . . . 0.2134 . . . . . . . . . . . . . . . . . .
1940 . . . . . . . . . . . . . . . . . . . . . 0.1933 . . . . . . . . . . . . . . . . . .
1941 . . . . . . . . . . . . . . . . . . . . . 0.2148 . . . . . . . . . . . . . . . . . .
1942 . . . . . . . . . . . . . . . . . . . . . 0.2329 . . . . . . . . . . . . . . . . . .
1943 . . . . . . . . . . . . . . . . . . . . . 0.2277 . . . . . . . . . . . . . . . . . .
1944 . . . . . . . . . . . . . . . . . . . . . 0.2352 . . . . . . . . . . . . . . . . . .
1945 . . . . . . . . . . . . . . . . . . . . . 0.2347 . . . . . . . . . . . . . . . . . .
1946 . . . . . . . . . . . . . . . . . . . . . 0.2398 . . . . . . . . . . . . . . . . . .
1947 . . . . . . . . . . . . . . . . . . . . . 0.2344 . . . . . . . . . . . . . . . . . .
1948 . . . . . . . . . . . . . . . . . . . . . 0.2519 . . . . . . . . . . . . . . . . . .
1949 . . . . . . . . . . . . . . . . . . . . . 0.2369 . . . . . . . . . . . . . . . . . .
1950 . . . . . . . . . . . . . . . . . . . . . 0.2381 . . . . . . . . . . . . . . . . . .
1951 . . . . . . . . . . . . . . . . . . . . . 0.2255 . . . . . . . . . . . . . . . . . .
1952 . . . . . . . . . . . . . . . . . . . . . 0.2455 . . . . . . . . . . . . . . . . . .
1953 . . . . . . . . . . . . . . . . . . . . . 0.2461 . . . . . . . . . . . . . . . . . .
1954 . . . . . . . . . . . . . . . . . . . . . 0.2491 . . . . . . . . . . . . . . . . . .
1955 . . . . . . . . . . . . . . . . . . . . . 0.2459 . . . . . . . . . . . . . . . . . .
1956 . . . . . . . . . . . . . . . . . . . . . 0.2473 . . . . . . . . . . . . . . . . . .
1957 . . . . . . . . . . . . . . . . . . . . . 0.2519 . . . . . . . . . . . . . . . . . .
1958 . . . . . . . . . . . . . . . . . . . . . 0.251 . . . . . . . . . . . . . . . . . .
1959 0.2589 . . . . . . . . . . . . . . . . . . 0.2535 . . . . . . . . . . . . . . . . . .
1960 0.2565 . . . . . . . . . . . . . . . . . . 0.2572 . . . . . . . . . . . . . . . . . .
1961 0.2619 . . . . . . . . . . . . . . . . . . 0.2512 . . . . . . . . . . . . . . . . . .
1962 0.2593 . . . . . . . . . . . . . . . . . . 0.2518 . . . . . . . . . . . . . . . . . .
1963 0.2564 . . . . . . . . . . . . . . . . . . 0.2494 . . . . . . . . . . . . . . . . . .
1964 0.2622 . . . . . . . . . . . . . . . . . . 0.2649 . . . . . . . . . . . . . . . . . .
1965 0.2621 . . . . . . . . . . . . . . . . . . 0.2625 . . . . . . . . . . . . . . . . . .
1966 0.2615 . . . . . . . . . . . . . . . . . . 0.2601 . . . . . . . . . . . . . . . . . .
1967 0.2661 . . . . . . . . . . . . . . . . . . 0.2695 . . . . . . . . . . . . . . . . . .
1968 0.2611 . . . . . . . . . . . . . . . . . . 0.2606 . . . . . . . . . . . . . . . . . .
1969 0.2663 . . . . . . . . . . . . . . . . . . 0.2603 . . . . . . . . . . . . . . . . . .
1970 0.2702 . . . . . . . . . . . . . . . . . . 0.265 . . . . . . . . . . . . . . . . . .
1971 0.2735 . . . . . . . . . . . . . . . . . . 0.271 . . . . . . . . . . . . . . . . . .
1972 0.2727 . . . . . . . . . . . . . . . . . . 0.2647 . . . . . . . . . . . . . . . . . .
1973 0.2758 . . . . . . . . . . . . . . . . . . 0.2683 . . . . . . . . . . . . . . . . . .
1974 0.2837 . . . . . . . . . . . . . . . . . . 0.2708 . . . . . . . . . . . . . . . . . .
1975 0.2927 . . . . . . . . . . . . . . . . . . 0.2737 . . . . . . . . . . . . . . . . . .
1976 0.2953 . . . . . . . . . . . . . . . . . . 0.2707 . . . . . . . . . . . . . . . . . .
1977 0.3015 . . . . . . . . . . . . . . . . . . 0.2793 . . . . . . . . . . . . . . . . . .
1978 0.3035 . . . . . . . . . . . . . . . . . . 0.2784 . . . . . . . . . . . . . . . . . .
1979 0.3104 . . . . . . . . . . . . . . . . . . 0.2787 . . . . . . . . . . . . . . . . . .
1980 0.3071 0.3131 0.3127 0.3070244 0.3064707 0.3192484 0.3191011 0.2849 0.2794 0.2796 0.2702205 0.2624991 0.2885771 0.2980753
1981 0.3123 0.3157 0.3158 0.3070961 0.3073612 0.3243779 0.3243557 0.2887 0.2801 0.2803 0.2670679 0.2599317 0.2929205 0.3018957
1982 0.3161 0.3184 0.3186 0.3077971 0.3084578 0.3290516 0.3290545 0.2895 0.2809 0.2812 0.2648757 0.2569526 0.2965405 0.3073598
1983 0.3152 0.3211 0.3216 0.3087323 0.3098178 0.3334214 0.3333397 0.2921 0.2817 0.2819 0.2630383 0.2545544 0.2996778 0.3107399
1984 0.3172 0.3238 0.3245 0.3100187 0.3113815 0.3377109 0.3375737 0.2987 0.2825 0.2827 0.2617423 0.252578 0.3026598 0.3143964
1985 0.3168 0.3265 0.3274 0.3114181 0.3130115 0.3418609 0.3417168 0.2944 0.2832 0.2835 0.2606173 0.2511214 0.3054096 0.3176265
1986 0.3195 0.3292 0.3302 0.312688 0.3148447 0.3459606 0.3456991 0.2999 0.284 0.2843 0.2592835 0.2495059 0.3080567 0.3207669
1987 0.3218 0.3319 0.3332 0.3141979 0.3166774 0.3499665 0.3499089 0.3067 0.2848 0.285 0.2583203 0.2478699 0.3105447 0.3246419
1988 0.3219 0.3346 0.3361 0.3159045 0.3188055 0.3534919 0.353813 0.308 0.2855 0.2859 0.2576606 0.2471354 0.3123561 0.3271521
1989 0.3278 0.3373 0.3391 0.3176353 0.3205324 0.3574424 0.3578324 0.3095 0.2863 0.2865 0.2570336 0.2454147 0.3147199 0.3293277
1990 0.3323 0.3401 0.3419 0.3193902 0.3226545 0.3612456 0.3618848 0.316 0.2871 0.2874 0.2564395 0.2446431 0.3168628 0.3329173
1991 0.3351 0.3428 0.3449 0.3211622 0.3248626 0.3647098 0.365647 0.3177 0.2879 0.2883 0.2558668 0.2438157 0.3185363 0.3360159
1992 0.339 0.3456 0.3479 0.3230582 0.3267414 0.3685342 0.3695189 0.3236 0.2887 0.2889 0.2554834 0.2426121 0.3206687 0.3379769
1993 0.3353 0.3483 0.3508 0.3248709 0.3289025 0.3723182 0.373395 0.3197 0.2895 0.2898 0.2549645 0.2413993 0.3227282 0.3411964
1994 0.3386 0.351 0.3537 0.3266859 0.3311424 0.3758645 0.3769502 0.3304 0.2902 0.2905 0.2544442 0.2408964 0.324461 0.3435445
1995 0.3397 0.3538 0.3566 0.3285961 0.3331775 0.3794886 0.3806725 0.3284 0.2909 0.2913 0.2540679 0.2402946 0.3262801 0.3461296
1996 0.3427 0.3565 0.3596 0.3306678 0.3353264 0.3828209 0.3842566 0.3344 0.2916 0.2921 0.2539389 0.2398858 0.3277102 0.3487171
1997 0.3463 0.3593 0.3625 0.3325665 0.3373944 0.3863456 0.3877663 0.3387 0.2924 0.293 0.2535346 0.2394905 0.329376 0.3509545
1998 0.3483 0.3621 0.3655 0.334405 0.3397675 0.3898354 0.3915972 0.3408 0.2932 0.2937 0.2530317 0.238383 0.3309852 0.3529655
1999 0.3478 0.3648 0.3684 0.3366333 0.3421735 0.3934594 0.3953689 0.3432 0.294 0.2944 0.2531315 0.2379548 0.3327531 0.3550946
2000 0.3507 0.3676 0.3714 0.338723 0.3444562 0.3969489 0.3992666 0.353 0.2947 0.2952 0.25301 0.2370732 0.3343395 0.3574583
2001 0.3538 0.3704 0.3743 0.3407647 0.3464839 0.4004086 0.4029681 0.3586 0.2955 0.2962 0.2528089 0.2369291 0.3358785 0.3600253
2002 0.3558 0.3732 0.3773 0.343043 0.3488584 0.4037736 0.4066951 0.3607 0.2963 0.2968 0.2529703 0.2365396 0.3372903 0.3617245
2003 . . . . . . . . . . . . . . . . . . . . . 0.3618 0.2971 0.2977 0.2527958 0.2364216 0.3390515 0.3640936
Old-age dependency ratio δ2
1900 . . . . . . . . . . . . . . . . . . . . . 0.7171 . . . . . . . . . . . . . . . . . .
1901 . . . . . . . . . . . . . . . . . . . . . 0.7234 . . . . . . . . . . . . . . . . . .
1902 . . . . . . . . . . . . . . . . . . . . . 0.7221 . . . . . . . . . . . . . . . . . .
1903 . . . . . . . . . . . . . . . . . . . . . 0.7231 . . . . . . . . . . . . . . . . . .
1904 . . . . . . . . . . . . . . . . . . . . . 0.7178 . . . . . . . . . . . . . . . . . .
1905 . . . . . . . . . . . . . . . . . . . . . 0.7183 . . . . . . . . . . . . . . . . . .
1906 . . . . . . . . . . . . . . . . . . . . . 0.7178 . . . . . . . . . . . . . . . . . .
1907 . . . . . . . . . . . . . . . . . . . . . 0.7129 . . . . . . . . . . . . . . . . . .
1908 . . . . . . . . . . . . . . . . . . . . . 0.7138 . . . . . . . . . . . . . . . . . .
1909 . . . . . . . . . . . . . . . . . . . . . 0.7086 . . . . . . . . . . . . . . . . . .
1910 . . . . . . . . . . . . . . . . . . . . . 0.7162 . . . . . . . . . . . . . . . . . .
1911 . . . . . . . . . . . . . . . . . . . . . 0.719 . . . . . . . . . . . . . . . . . .
1912 . . . . . . . . . . . . . . . . . . . . . 0.7139 . . . . . . . . . . . . . . . . . .
1913 . . . . . . . . . . . . . . . . . . . . . 0.7152 . . . . . . . . . . . . . . . . . .
1914 . . . . . . . . . . . . . . . . . . . . . 0.738 . . . . . . . . . . . . . . . . . .
1915 . . . . . . . . . . . . . . . . . . . . . 0.7656 . . . . . . . . . . . . . . . . . .
1916 . . . . . . . . . . . . . . . . . . . . . 0.8138 . . . . . . . . . . . . . . . . . .
1917 . . . . . . . . . . . . . . . . . . . . . 0.857 . . . . . . . . . . . . . . . . . .
1918 . . . . . . . . . . . . . . . . . . . . . 0.9359 . . . . . . . . . . . . . . . . . .
1919 . . . . . . . . . . . . . . . . . . . . . 0.7304 . . . . . . . . . . . . . . . . . .
1920 . . . . . . . . . . . . . . . . . . . . . 0.7327 . . . . . . . . . . . . . . . . . .
1921 . . . . . . . . . . . . . . . . . . . . . 0.7258 . . . . . . . . . . . . . . . . . .
1922 . . . . . . . . . . . . . . . . . . . . . 0.7142 . . . . . . . . . . . . . . . . . .
1923 . . . . . . . . . . . . . . . . . . . . . 0.7219 . . . . . . . . . . . . . . . . . .
1924 . . . . . . . . . . . . . . . . . . . . . 0.7149 . . . . . . . . . . . . . . . . . .
1925 . . . . . . . . . . . . . . . . . . . . . 0.7168 . . . . . . . . . . . . . . . . . .
1926 . . . . . . . . . . . . . . . . . . . . . 0.721 . . . . . . . . . . . . . . . . . .
1927 . . . . . . . . . . . . . . . . . . . . . 0.7126 . . . . . . . . . . . . . . . . . .
1928 . . . . . . . . . . . . . . . . . . . . . 0.7207 . . . . . . . . . . . . . . . . . .
1929 . . . . . . . . . . . . . . . . . . . . . 0.7047 . . . . . . . . . . . . . . . . . .
1930 . . . . . . . . . . . . . . . . . . . . . 0.7238 . . . . . . . . . . . . . . . . . .
1931 . . . . . . . . . . . . . . . . . . . . . 0.7141 . . . . . . . . . . . . . . . . . .
1932 . . . . . . . . . . . . . . . . . . . . . 0.7152 . . . . . . . . . . . . . . . . . .
1933 . . . . . . . . . . . . . . . . . . . . . 0.7156 . . . . . . . . . . . . . . . . . .
1934 . . . . . . . . . . . . . . . . . . . . . 0.7207 . . . . . . . . . . . . . . . . . .
1935 . . . . . . . . . . . . . . . . . . . . . 0.7181 . . . . . . . . . . . . . . . . . .
1936 . . . . . . . . . . . . . . . . . . . . . 0.713 . . . . . . . . . . . . . . . . . .
1937 . . . . . . . . . . . . . . . . . . . . . 0.7107 . . . . . . . . . . . . . . . . . .
1938 . . . . . . . . . . . . . . . . . . . . . 0.7205 . . . . . . . . . . . . . . . . . .
1939 . . . . . . . . . . . . . . . . . . . . . 0.7113 . . . . . . . . . . . . . . . . . .
1940 . . . . . . . . . . . . . . . . . . . . . 0.714 . . . . . . . . . . . . . . . . . .
1941 . . . . . . . . . . . . . . . . . . . . . 0.7276 . . . . . . . . . . . . . . . . . .
1942 . . . . . . . . . . . . . . . . . . . . . 0.7462 . . . . . . . . . . . . . . . . . .
1943 . . . . . . . . . . . . . . . . . . . . . 0.749 . . . . . . . . . . . . . . . . . .
1944 . . . . . . . . . . . . . . . . . . . . . 0.7601 . . . . . . . . . . . . . . . . . .
1945 . . . . . . . . . . . . . . . . . . . . . 0.7735 . . . . . . . . . . . . . . . . . .
1946 . . . . . . . . . . . . . . . . . . . . . 0.726 . . . . . . . . . . . . . . . . . .
1947 . . . . . . . . . . . . . . . . . . . . . 0.7204 . . . . . . . . . . . . . . . . . .
1948 . . . . . . . . . . . . . . . . . . . . . 0.7338 . . . . . . . . . . . . . . . . . .
1949 . . . . . . . . . . . . . . . . . . . . . 0.7183 . . . . . . . . . . . . . . . . . .
1950 . . . . . . . . . . . . . . . . . . . . . 0.7173 . . . . . . . . . . . . . . . . . .
1951 . . . . . . . . . . . . . . . . . . . . . 0.7041 . . . . . . . . . . . . . . . . . .
1952 . . . . . . . . . . . . . . . . . . . . . 0.721 . . . . . . . . . . . . . . . . . .
1953 . . . . . . . . . . . . . . . . . . . . . 0.7205 . . . . . . . . . . . . . . . . . .
1954 . . . . . . . . . . . . . . . . . . . . . 0.7226 . . . . . . . . . . . . . . . . . .
1955 . . . . . . . . . . . . . . . . . . . . . 0.7189 . . . . . . . . . . . . . . . . . .
1956 . . . . . . . . . . . . . . . . . . . . . 0.7193 . . . . . . . . . . . . . . . . . .
1957 . . . . . . . . . . . . . . . . . . . . . 0.7245 . . . . . . . . . . . . . . . . . .
1958 . . . . . . . . . . . . . . . . . . . . . 0.7226 . . . . . . . . . . . . . . . . . .
1959 0.7392 . . . . . . . . . . . . . . . . . . 0.725 . . . . . . . . . . . . . . . . . .
1960 0.737 . . . . . . . . . . . . . . . . . . 0.7283 . . . . . . . . . . . . . . . . . .
1961 0.7414 . . . . . . . . . . . . . . . . . . 0.7226 . . . . . . . . . . . . . . . . . .
1962 0.7392 . . . . . . . . . . . . . . . . . . 0.7231 . . . . . . . . . . . . . . . . . .
1963 0.7369 . . . . . . . . . . . . . . . . . . 0.7209 . . . . . . . . . . . . . . . . . .
1964 0.7428 . . . . . . . . . . . . . . . . . . 0.736 . . . . . . . . . . . . . . . . . .
1965 0.7426 . . . . . . . . . . . . . . . . . . 0.7335 . . . . . . . . . . . . . . . . . .
1966 0.7425 . . . . . . . . . . . . . . . . . . 0.731 . . . . . . . . . . . . . . . . . .
1967 0.7468 . . . . . . . . . . . . . . . . . . 0.7393 . . . . . . . . . . . . . . . . . .
1968 0.7429 . . . . . . . . . . . . . . . . . . 0.7304 . . . . . . . . . . . . . . . . . .
1969 0.7481 . . . . . . . . . . . . . . . . . . 0.7307 . . . . . . . . . . . . . . . . . .
1970 0.7515 . . . . . . . . . . . . . . . . . . 0.7348 . . . . . . . . . . . . . . . . . .
1971 0.7541 . . . . . . . . . . . . . . . . . . 0.7404 . . . . . . . . . . . . . . . . . .
1972 0.753 . . . . . . . . . . . . . . . . . . 0.7343 . . . . . . . . . . . . . . . . . .
1973 0.7557 . . . . . . . . . . . . . . . . . . 0.7377 . . . . . . . . . . . . . . . . . .
1974 0.7619 . . . . . . . . . . . . . . . . . . 0.7397 . . . . . . . . . . . . . . . . . .
1975 0.7696 . . . . . . . . . . . . . . . . . . 0.7421 . . . . . . . . . . . . . . . . . .
1976 0.7711 . . . . . . . . . . . . . . . . . . 0.7389 . . . . . . . . . . . . . . . . . .
1977 0.7768 . . . . . . . . . . . . . . . . . . 0.7467 . . . . . . . . . . . . . . . . . .
1978 0.7783 . . . . . . . . . . . . . . . . . . 0.7463 . . . . . . . . . . . . . . . . . .
1979 0.7845 . . . . . . . . . . . . . . . . . . 0.7461 . . . . . . . . . . . . . . . . . .
1980 0.7811 0.7869 0.7864 0.7814854 0.7809068 0.7924609 0.7921503 0.7514 0.7467 0.7469 0.7407507 0.7312871 0.752853 0.7638705
1981 0.7853 0.7893 0.7892 0.7815495 0.7818693 0.797094 0.796681 0.7546 0.7472 0.7474 0.7388714 0.7289924 0.755966 0.7671844
1982 0.7879 0.7917 0.7917 0.7821763 0.7829733 0.8013287 0.8007544 0.7549 0.7478 0.7482 0.737604 0.726057 0.758623 0.7721451
1983 0.7863 0.7941 0.7944 0.7830131 0.7843666 0.8052991 0.8045971 0.757 0.7484 0.7488 0.7365677 0.7242651 0.7609688 0.7750479
1984 0.7882 0.7966 0.797 0.7841649 0.7858574 0.8092064 0.8083655 0.7631 0.7491 0.7495 0.7358515 0.7221234 0.7632336 0.7785212
1985 0.7878 0.799 0.7996 0.7854193 0.7874449 0.8129956 0.8120172 0.7585 0.7496 0.7502 0.7352399 0.7210678 0.765351 0.78186
1986 0.791 0.8015 0.8022 0.7865587 0.7890069 0.8167474 0.8157425 0.7637 0.7503 0.7508 0.7345272 0.7196723 0.7674141 0.784236
1987 0.793 0.8039 0.8049 0.7879147 0.7908195 0.8204213 0.8194734 0.7702 0.7508 0.7515 0.7340211 0.7181084 0.7693747 0.7877582
1988 0.7934 0.8064 0.8076 0.7894491 0.7927865 0.8236606 0.8229094 0.7713 0.7514 0.7523 0.7336787 0.7172447 0.7708146 0.7903342
1989 0.799 0.8089 0.8103 0.7910071 0.7945162 0.8272973 0.8266726 0.7724 0.752 0.7528 0.7333565 0.7161473 0.7727089 0.7922366
1990 0.8032 0.8114 0.8129 0.7925888 0.7963735 0.830805 0.8302687 0.7788 0.7526 0.7536 0.7330541 0.7149966 0.7744406 0.7953727
1991 0.8059 0.8139 0.8157 0.7941877 0.7984978 0.8340053 0.8337502 0.7801 0.7532 0.7544 0.7327655 0.7140544 0.7758022 0.7983041
1992 0.8093 0.8165 0.8184 0.7959005 0.8003723 0.8375443 0.837232 0.7854 0.7539 0.7549 0.7325737 0.7134189 0.7775485 0.8003573
1993 0.8061 0.819 0.8211 0.7975401 0.8024405 0.8410517 0.8408718 0.7815 0.7545 0.7557 0.732316 0.7120346 0.7792468 0.8030725
1994 0.8093 0.8215 0.8238 0.7991837 0.8043641 0.8443439 0.8440046 0.7917 0.7551 0.7563 0.73206 0.7118593 0.7806842 0.8054232
1995 0.8102 0.824 0.8265 0.8009154 0.8063554 0.8477133 0.8475714 0.7899 0.7556 0.757 0.7318763 0.7108363 0.7822015 0.8077975
1996 0.8116 0.8265 0.8292 0.8027959 0.8084903 0.8508158 0.8508444 0.7956 0.7562 0.7577 0.7318135 0.7101598 0.7834002 0.8098067
1997 0.8138 0.8291 0.832 0.8045215 0.8103601 0.8541018 0.8542466 0.7995 0.7569 0.7585 0.7316179 0.7100974 0.7848024 0.8121652
1998 0.815 0.8316 0.8347 0.8061942 0.8124763 0.8573596 0.857806 0.8014 0.7574 0.7592 0.7313765 0.7088505 0.7861633 0.8139408
1999 0.8143 0.8342 0.8374 0.8082239 0.8146104 0.8607472 0.8611384 0.8036 0.7581 0.7598 0.7314275 0.7088786 0.787665 0.815943
2000 0.8173 0.8368 0.8402 0.8101297 0.8167252 0.8640133 0.8647204 0.8131 0.7587 0.7605 0.7313688 0.7080973 0.7890186 0.8182765
2001 0.8206 0.8394 0.8429 0.8119938 0.8187642 0.8672555 0.8682446 0.8184 0.7593 0.7614 0.7312731 0.7076554 0.7903369 0.8208523
2002 0.8226 0.8419 0.8457 0.8140766 0.8210406 0.8704127 0.8717245 0.8202 0.7599 0.7619 0.7313472 0.7071208 0.7915506 0.8224514
2003 . . . . . . . . . . . . . . . . . . . . . 0.8212 0.7605 0.7628 0.7312645 0.7069049 0.7930705 0.8251649
 
SOURCE: Author's calculations.
NOTE: AR(1) = Lag 1 autoregression.

The experimental design of the ex-post analysis implemented in this paper looks at forecast error at fixed lead times, using different forecast origins. For every data set and model, N = 20,000 random paths are simulated from 1980 forward for each of the 21 age groups. Since the Lee-Carter model takes as inputs the logarithmic death rates while the AR(1) approach models the rates of mortality improvement, the generated paths are transformed back into mortality rates prior to computing the features of interest of the forecast distribution. The mortality paths are then used to calculate the mean, median, and 5th and 95th quantiles for each age group and forecast period. In addition, the simulations corresponding to all 21 ages are also used to compute similar estimates for life expectancy at birth  e 0 , t  and the dependency ratios  δ 1 , t  and  δ 2 , t . Finally, the same process is repeated with other jump-off years (1981, 1982, 1983 and so on). This is done to limit the influence of any particular forecast origin on the results, and thus, improve the robustness of the findings. At the end of the exercise, there are n projections of the quantities of interest with a 1-year forecast horizon, n − 1 projections 2 years ahead, and eventually, 1 projection n years into the future, where n denotes the longest forecast horizon available, as the fourth column of Table 1 shows.

Once all the projections are obtained it is a simple matter to evaluate forecast error using the specified performance criteria. For the point estimators (means and medians), performance is measured in terms of RMSE. Formally, let  m ^ a , t , Δ t  represent the Δt-step-ahead forecast of the mortality rate for age group a in year t. The RMSE associated with a particular age series and fixed lead time Δt is calculated as follows:

(27)  RMSE a , Δ t = 1 T t i + 1 t = t i T ( m ^ a , t , Δ t m a , t ) 2 ,

where ti represents the jump-off year of the forecast in question and  m a , t  denotes observed mortality. For instance, taking a 1-year forecast horizon (Δt = 1), for the United States (see Table 1) there are 23 forecasts spanning the period from ti = 1980 to T = 2002. Similarly, there are 14 ten-step-ahead forecasts (Δt = 10), with ti = 1989 and T = 2002, while the single 23-years-ahead projection involves ti = T = 2002.

The performance of the interval forecasts is determined by computing the actual fraction of times ex-post mortality rates lie inside the intervals. Let  C ^ a , t , Δ t  denote the area covered by the 90 percent Δt-step-ahead interval forecast of mortality for age-group a in year t. Furthermore, define an indicator function taking a value of 1 if the calculated  C ^ a , t , Δ t  includes the observed mortality rate, and 0 otherwise:

(28)  I ( m a , t , C ^ a , t , Δ t ) = { 1 if  m a , t C ^ a , t , Δ t 0 otherwise .

Then, the empirical probability associated with the interval projection at age a and forecast horizon Δt is given by

(29)  P a , Δ t = 1 T t i + 1 t = t i T I ( m a , t , C ^ a , t , Δ t ) .

A similar approach is used to calculate the average width of the intervals.

Finally, the overall measures of performance are a function of either all or most of the 21 age groups. In this case, the forecast error associated with the point estimates of the entire age profile at a particular forecast horizon Δt is simply obtained by averaging over the ages

(30)  RMSE Δ t = 1 A a = 1 A 1 T t i + 1 t = t i T ( m ^ a , t , Δ t m a , t ) 2 .

Likewise, the RMSE associated with, for instance, the point projections of life expectancy at birth and forecast horizon Δt is computed as follows

(31)  RMSE e 0 , Δ t = 1 T t i + 1 t = t i T ( e ^ 0 , t , Δ t e 0 , t ) 2 .

Similar expressions for the dependency ratios are obtained by replacing  e ^ 0 , t , Δ t  and  e 0 , t  above with the corresponding values of  δ ^ i , t , Δ t  and  δ i , t . The extension of these equations to compute the empirical coverage and average width of the interval estimates is also obvious. In addition, it is straightforward to modify these expressions to estimate forecast error over multiple forecast horizons or the entire forecast period.

Forecast Performance of Point Projections

The first four columns of Table 4 present the resulting RMSE corresponding to the median forecasts of the Lee-Carter (LC) model for the following measures of overall forecast performance: the age profile, life expectancy at birth e0, and the two age-dependency ratios δ1 and δ2 defined in equations (25) and (26), respectively. These quantities are computed over all available forecast horizons. Since both the means and medians of the forecast distribution are entertained as plausible point estimators, columns 5 through 8 in Table 4 display the ratio of RMSE between the two. Clearly, for the first three measures (the age profile, e0, and δ1), the median is a better performing point estimator than the mean in the large majority of cases, as most of the ratios exceed 1. Only for the more comprehensive measure of dependency (δ2) do the mean projections generally exhibit lower RMSE than their median counterpart, although the differences between the two are fairly small. Moreover, while not shown for the sake of conciseness, the results corresponding to the AR(1) model are qualitatively similar. In light of these findings, this paper focuses exclusively on the median forecasts from this point forward.

Table 4. Lee-Carter (LC) Model: RMSE of medians and ratio of RMSE between means and medians, by country
Country LC: RMSE of median forecasts LC: Ratio of RMSE (mean/median)
Age Profile e0 δ1 δ2 Age Profile e0 δ1 δ2
Austria 0.01270 1.55660 0.03082 0.02887 1.006 1.057 1.005 0.996
Belgium 0.00787 1.08555 0.02921 0.03067 1.020 1.168 1.007 0.979
Canada 0.00422 0.91612 0.01810 0.01684 1.001 1.024 1.002 0.996
Denmark 0.00693 0.85787 0.01476 0.01346 1.004 1.124 1.020 0.982
Finland 0.00977 1.46775 0.03279 0.03256 1.005 1.147 1.009 0.972
France 0.00803 1.22205 0.02809 0.02854 1.081 1.367 1.024 0.928
Germany 0.00801 1.65540 0.02827 0.02494 1.021 1.031 0.997 0.993
Italy 0.01469 1.89066 0.03745 0.03691 1.007 1.094 1.013 0.992
Japan 0.01434 0.40010 0.01164 0.01453 1.003 0.962 1.016 1.007
Netherlands 0.00687 0.45293 0.01030 0.01043 0.995 1.541 1.056 0.954
Norway 0.00972 1.26707 0.02499 0.02474 1.001 1.083 1.011 0.990
Spain 0.00703 0.41821 0.01380 0.01659 1.010 1.342 1.060 1.006
Sweden 0.00698 1.90267 0.03206 0.02914 1.025 1.144 1.034 0.992
Switzerland 0.00662 1.19000 0.02600 0.02568 1.024 1.096 1.018 0.996
United Kingdom 0.00851 1.90517 0.03731 0.03622 1.011 1.107 1.012 0.987
United States 0.00854 0.31685 0.00782 0.00861 0.991 0.981 1.002 1.006
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; RMSE = root mean squared error.

To facilitate comparison, columns 1 through 4 in Table 5 present the ratios of RMSE in the median forecasts between the LC and AR(1) models (again, over all forecast horizons). Notice how forecast performance can vary across the different specified criteria. For example, for the Netherlands or the United States, the AR(1) approach outperforms Lee-Carter over the age profile, while the latter model actually exhibits lower RMSE for the projections of life expectancy and the dependency ratios. Conversely, for Finland, Germany and Japan, the LC model enjoys lower RMSE over the age profile but is outranked by the first-order autoregressive approach in the remaining measures.

Table 5. Ratio of RMSE in median forecasts between models and percentage of forecasts below actual, by country
Country Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)
Age Profile e0 δ1 δ2 Age Profile e0 δ1 δ2 Age Profile e0 δ1 δ2
Austria 1.224 1.194 1.141 1.125 22.89 96.59 97.85 98.28 20.11 98.60 99.81 99.43
Belgium 0.918 0.979 0.911 0.865 49.87 95.39 97.49 97.49 48.67 97.40 98.26 98.26
Canada 0.988 0.997 0.970 0.956 31.26 96.11 96.52 96.75 27.45 96.32 97.21 96.77
Denmark 1.045 1.124 1.020 0.965 41.88 79.01 79.96 81.49 41.38 83.15 81.12 80.90
Finland 1.045 0.954 0.947 0.848 41.88 93.24 96.76 98.07 41.38 93.77 98.81 98.83
France 0.901 0.574 0.893 0.818 33.29 97.07 97.46 97.44 37.10 98.62 98.84 95.23
Germany 1.013 0.933 0.937 0.944 15.40 98.03 98.64 98.25 15.06 98.41 99.03 99.05
Italy 0.985 0.992 1.020 1.005 32.26 98.47 98.63 98.44 36.54 99.05 98.82 98.82
Japan 1.002 0.845 0.985 0.969 71.89 20.47 78.85 85.70 70.50 29.67 83.37 87.07
Netherlands 0.943 1.450 1.234 1.136 46.25 89.57 92.00 92.82 42.21 95.47 95.92 96.38
Norway 0.914 0.978 0.924 0.900 33.79 89.76 93.63 95.51 33.76 90.33 93.62 94.86
Spain 0.964 0.923 0.888 0.849 51.62 72.22 92.69 94.72 53.05 71.30 93.35 94.31
Sweden 1.154 1.181 1.159 1.132 11.44 98.56 98.04 97.66 10.77 99.65 99.65 99.48
Switzerland 1.102 1.044 1.023 0.982 31.32 95.46 98.04 98.20 30.38 96.83 98.36 98.53
United Kingdom 1.023 1.114 1.035 0.989 29.33 99.12 99.12 98.94 25.92 99.65 99.65 99.65
United States 0.970 1.413 1.235 1.191 50.41 33.07 19.01 17.79 54.86 24.64 13.05 11.82
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

The LC model outranks the autoregressive approach in half of all cases for δ1 and the age profile, while the AR(1) model displays lower RMSE in the other half. For life expectancy at birth e0, the LC model does better in 7 of the data sets but is outperformed in the remaining 9 cases. For the broader dependency measure δ2, the AR(1) approach outperforms the LC model in 11 out of the 16 countries. Furthermore, in most instances, the differences in performance between the models are relatively small (that is, most of the ratios are fairly close to 1). There are a few notable exceptions to this finding for the forecasts of e0. For instance, for France, the AR(1) approach reduces forecast error in life expectancy at birth by almost half relative to the LC model-likewise for the Netherlands and the United States. Overall, however, both models seem to display rather similar performance.

The remaining columns in Table 5 report the percentage of times the median projections in both models fall below the actual values for each of the four evaluation criteria. Clearly, for a given measure, the percentages corresponding to each model are very close to one another, suggesting that both models generate forecasts that are roughly biased in the same direction. With the exceptions of Japan, Spain, and the United States, notice that over the age profile, the percentages in Table 5 fall below 50 percent, so that the models tend to moderately overestimate actual mortality in most cases. By contrast, the large majority of the forecasts of life expectancy at birth and the age-dependency ratios underestimate their observed values. Specifically, only the median projections corresponding to Japan and the United States overpredict life expectancy, while the dependency ratios are also overestimated only for the United States. For the remaining data sets, between 70 percent to 99 percent of all generated forecasts underpredict e0, δ1, and δ2.

To gain insight into the results presented in Table 5 (the models' forecasts overestimate actual mortality but underestimate life expectancy and the age dependency ratios), it is important to consider the mechanism via which the age-specific mortalities enter the calculation of e0, δ1, and δ2. In all cases, the quantities that matter are the longitudinal numbers of survivors out of some initial population, as defined in equation (21). Suppose that a particular forecast  m ^ a , t  overpredicts actual mortality at age a and time t. Then, the implied survival rate  s ^ a , t = ( 1 m ^ a , t )  will underestimate the projected number of people that graduate into the next age category. Of course, whether the resulting future estimates of life expectancy at birth will underproject the observed values depends not only on the fraction of the age-specific rates that overestimate mortality, but also on the magnitude of their forecast error. Dependency ratios are further complicated by the fact that they comprise the quotient of longitudinal numbers of survivors at different ages, so that the distribution of both the bias and magnitude of forecast error across the ages plays a large role.

Performance by Age Group

One way to measure how error is distributed among the ages is to determine the percentage that each particular age group contributes to the value of total forecast error. For ease of presentation and to maintain consistency with how the dependency ratios have been defined, the individual age groups are aggregated into three broad categories (ages 0–19, ages 2–64, and ages 65–95 or older, respectively), containing 5, 9, and 7 of the 21 original groups. Broadly, these three categories encompass birth to young adulthood, the working population, and individuals in retirement ages. Following the discussion in the previous section, the RMSE associated with some individual age group a over all forecast horizons Δt is determined by

(32)  RMSE a = 1 n Δ t = 1 n 1 T t i + 1 t = t i T ( m ^ a , t , Δ t m a , t ) 2 ,

where n denotes the longest forecast horizon shown in Table 1. Similarly, the computation of RMSE over the entire age profile involves

RMSE = 1 A a = 1 A ( RMSE a ) 2
A ( RMSE ) 2 = a a j ( RMSE a ) 2 + a a j ( RMSE a ) 2 ,

with aj representing either a single age group or a subset of ages, such as the 65–95 or older retirement category. It follows then, that the proportion pi of total mean squared error (MSE) corresponding to aj is given by

(33)  p i = a a j ( RMSE a ) 2 A ( RMSE ) 2 = 1 a a j ( RMSE a ) 2 A ( RMSE ) 2 .

Table 6 displays the percentage of forecast error over the entire age profile that is attributed to two broad sets of ages. The first set comprises the initial 14 age groups being modeled (from birth to age 64). These series make up less than 1 percent of total forecast error in most cases, and less than 3 percent in both models and all 16 data sets. By contrast, the retirement ages account for 97 percent to 99 percent of total MSE. In terms of model performance by age, the first three columns in Table 7 present the ratio of RMSE between models for the three broad age categories specified by the dependency measures. The first-order autoregressive approach outperforms the Lee-Carter model in 11 out of the 16 countries for the youngest age groups (ages 0–19), 7 countries for the working population (ages 20–64), and half of all countries for the retirement category (ages 65–95 or older). Furthermore, a comparison of the ratios in the first column of Table 5 with those in the third column of Table 7 reveals that they are virtually identical in magnitude, confirming once more that the oldest age groups overwhelmingly determine total forecast error over the age profile. The remaining columns in Table 7 show the percentage of the median forecasts that fall below the observed ex-post mortality rates by model and broad age category. Clearly, in all but one case (the United States), the models are far more likely to overestimate actual mortality for the oldest ages than for any age group. In most cases, over three-fourths of the generated projections for the 65–95 or older ages overpredict observed mortality.

Table 6. Percentage of total forecast error corresponding to various age categories, by country
Country Ages 0–64 Ages 65–95 or Older
LC AR(1) LC AR(1)
Austria 0.13 0.12 99.87 99.88
Belgium 0.63 0.64 99.37 99.36
Canada 2.24 2.12 97.76 97.88
Denmark 0.70 0.66 99.30 99.34
Finland 0.70 0.58 99.30 99.42
France 0.38 0.42 99.62 99.58
Germany 0.29 0.28 99.71 99.72
Italy 0.39 0.38 99.61 99.62
Japan 0.15 0.12 99.85 99.88
Netherlands 0.25 0.35 99.75 99.65
Norway 0.53 0.54 99.47 99.46
Spain 0.35 0.26 99.65 99.74
Sweden 0.90 0.82 99.10 99.18
Switzerland 0.33 0.30 99.67 99.70
United Kingdom 1.57 1.65 98.43 98.35
United States 0.09 0.13 99.91 99.87
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.
Table 7. Ratio of RMSE in median forecasts between models and percentage of forecasts below actual, by country and broad age-categories
Country Ratio of RMSE AR(1)/LC Ages 0–19 Ages 20–64 Ages 65–95 or older
Ages 0–19 Ages 20–64 Ages 65–95
or older
LC AR(1) LC AR(1) LC AR(1)
Austria 1.131 1.195 1.224 49.62 41.63 20.36 20.65 7.05 4.04
Belgium 0.916 0.926 0.918 67.82 64.29 68.22 66.29 13.45 14.86
Canada 1.166 0.951 0.989 52.79 50.86 39.59 39.17 37.03 37.47
Denmark 0.883 1.038 1.045 36.77 31.71 33.17 29.38 24.87 21.92
Finland 0.968 0.949 1.045 62.47 55.50 50.01 52.48 21.47 18.23
France 0.624 1.019 0.901 31.56 44.02 54.50 56.21 7.25 7.60
Germany 1.093 0.989 1.013 23.09 19.42 15.46 17.43 9.84 8.91
Italy 0.930 1.001 0.986 52.51 62.96 43.17 47.96 3.76 2.99
Japan 0.893 0.935 1.002 96.34 95.64 96.28 94.31 23.07 21.91
Netherlands 0.989 1.130 0.942 38.87 36.90 58.71 54.69 35.51 29.96
Norway 0.916 0.923 0.914 31.99 33.28 48.26 47.36 16.48 16.62
Spain 0.720 1.039 0.964 68.86 68.63 71.87 74.11 13.29 14.84
Sweden 0.929 1.152 1.154 18.29 19.60 8.14 7.54 10.79 8.60
Switzerland 1.055 1.054 1.102 37.51 39.30 42.81 44.39 12.12 6.00
United Kingdom 0.995 1.060 1.023 19.85 15.40 52.39 48.32 6.45 4.64
United States 1.515 0.983 0.969 28.35 36.11 42.40 43.60 76.47 82.75
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag autoregression; LC = Lee-Carter Model.

Two obvious patterns concerning the models' median forecasts emerge from Tables 6 and 7. First, the bulk of forecast error is heavily concentrated among the oldest ages. Second, the majority of the forecasts corresponding to these age groups overestimate observed mortality. These findings shed additional light on the results shown previously in Table 5. In particular, a very high proportion of the forecasts for the 65–95 or older age groups overestimates mortality and hence, underestimates the number of population survivors at these ages. Furthermore, since these groups carry greater importance in determining how the magnitude of the forecast error is distributed across the ages, they are more likely to underpredict the total number of person-years remaining at birth, and thus e0. Similarly, the 65–95 or older age groups enter the computation of the dependency ratios through the numerator. Consequently, if the number of survivors at these ages is underestimated, so are likely to be the values of δ1 and δ2. The exception to this pattern involves the projections for the United States, where mortality is underestimated at the oldest ages instead, while the forecasts of life expectancy and the dependency ratios overestimate their ex-post values.

Performance by Forecast Horizon

To assess how the median forecasts change with the length of the forecast horizon, the generated projections are grouped into four periods: 1–5 years, 6–10 years, 11–15 years, and 16 or more years ahead. Notice that the last category varies with the final year of data available for each series, involving 16–23 years ahead in most cases. Table 8 presents the ratio of RMSE between models over the age profile, as well as the percentage of the median forecasts that fall below observed ex-post mortality over the various forecast horizons. Tables 9 through 11 display similar quantities for the projections of life expectancy at birth e0 and the dependency ratios δ1 and δ2, respectively. Although not discernible from the ratios in the first four columns of each table, as expected, forecast error generally increases with the distance of the forecast horizon.

Table 8. Ratio of RMSE in median forecasts of the age profile and percentage of forecasts below actual, by country and forecast horizon
Country Ratio of RMSE AR(1)/LC LC: Below actual (percent AR(1): Below actual (percent)
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 1.015 1.160 1.213 1.249 36.04 22.50 19.01 17.35 32.90 20.87 16.97 13.60
Belgium 0.930 0.953 0.973 0.874 49.92 51.35 51.15 48.12 45.98 49.55 50.54 48.64
Canada 0.883 0.874 0.953 1.049 38.74 41.61 46.97 40.83 37.84 40.27 45.58 41.68
Denmark 1.026 1.030 0.995 1.066 42.69 38.49 32.35 21.39 39.69 35.89 28.51 16.57
Finland 1.011 0.952 0.955 1.125 40.89 40.62 44.74 46.05 34.87 40.26 45.03 45.03
France 0.962 0.953 0.918 0.878 40.35 30.76 30.72 32.05 39.22 39.70 35.96 34.87
Germany 0.996 1.004 1.000 1.019 28.56 22.03 12.37 4.93 28.42 23.76 13.97 1.97
Italy 1.019 1.003 0.988 0.981 30.70 28.21 36.82 32.91 28.30 31.83 41.83 41.33
Japan 0.996 1.033 1.023 0.995 68.01 72.06 74.11 72.83 63.03 70.47 74.26 72.83
Netherlands 0.972 0.915 0.948 0.940 46.13 44.90 47.38 46.44 38.24 41.38 44.61 43.55
Norway 0.932 0.954 0.905 0.874 43.42 36.34 30.18 28.45 41.93 37.17 29.41 29.25
Spain 0.959 0.978 0.954 0.965 50.42 47.47 51.81 54.50 47.68 51.39 55.12 55.81
Sweden 1.080 1.076 1.133 1.186 27.30 13.88 6.14 4.22 21.02 12.46 6.75 6.36
Switzerland 1.056 1.077 1.079 1.115 38.76 30.11 29.34 29.19 34.45 29.13 28.73 29.81
United Kingdom 0.968 1.010 1.026 1.027 36.26 31.89 27.75 24.94 30.11 29.22 25.87 21.79
United States 0.975 0.961 0.962 0.972 51.02 50.57 50.56 49.84 54.09 55.28 57.03 53.74
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag autoregression; LC = Lee-Carter Model.

Beginning with the age profile in Table 8, the first-order autoregressive approach outperforms the Lee-Carter model in ten cases for the 1–5 and 11–15 year horizons and in eight cases for the 6–10 and 16 or more year periods. While not always true, the differences in model performance tend to increase with the length of the forecast horizon, with the largest divergence corresponding to Austria in the 16 or more year period, where RMSE over the age profile for the AR(1) model is approximately 25 percent greater than for the LC approach. In most cases, a moderately larger proportion of the mortality forecasts tend to overpredict their observed values, except for Japan, where roughly three-fourths of the mortality forecasts involve underpredictions. The same pattern holds true for Spain and the United States, where approximately 50 percent of all forecasts underpredict mortality. Moreover, in about half of all countries, the percentage of projections overpredicting mortality increases as a function of the forecast horizon.

Turning to the median projections of life expectancy at birth in Table 9, the LC model outperforms the AR(1) approach in thirteen countries for the 1–5 year horizon, nine countries for the 6–10 year period, eight countries for the 11–15 horizon, and seven countries for 16 or more years ahead. Barring a few exceptions typically involving the longest forecast horizons (such as France, the Netherlands, and the United States), most of these ratios are relatively close to 1. Moreover, excluding the United States and Japan, the projections generated by both models overwhelmingly underpredict life expectancy, particularly as the distance of the forecast horizon increases. In fact, at the 16 or more year horizon 100 percent of the forecasts of life expectancy at birth underpredict their ex-post values for the majority of the data sets in both models.

Table 9. Ratio of RMSE in median forecasts of life expectancy at birth e0 and percentage forecasts below actual, by country and forecast horizon
Country Ratio of RMSE AR(1)/LC LC: Below actual (percent AR(1): Below actual (percent)
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 1.169 1.194 1.198 1.193 84.32 100.00 100.00 100.00 93.58 100.00 100.00 100.00
Belgium 1.057 1.004 0.982 0.974 78.80 100.00 100.00 100.00 88.06 100.00 100.00 100.00
Canada 1.024 1.012 1.005 0.994 82.10 100.00 100.00 100.00 83.05 100.00 100.00 100.00
Denmark 1.102 1.082 1.106 1.139 62.42 61.24 75.61 97.89 68.76 71.10 80.13 97.89
Finland 1.068 0.977 0.938 0.952 78.36 90.55 100.00 100.00 80.78 90.55 100.00 100.00
France 0.800 0.468 0.516 0.595 86.54 100.00 100.00 100.00 95.94 97.71 100.00 100.00
Germany 0.977 0.954 0.929 0.931 90.93 100.00 100.00 100.00 92.67 100.00 100.00 100.00
Italy 1.025 0.981 0.981 0.995 92.96 100.00 100.00 100.00 95.61 100.00 100.00 100.00
Japan 0.907 0.842 0.795 0.901 36.63 17.32 1.54 24.18 48.30 29.91 5.76 32.83
Netherlands 1.193 1.344 1.479 1.471 69.87 86.15 93.94 100.00 83.07 95.19 100.00 100.00
Norway 1.020 0.998 0.980 0.971 73.60 79.31 100.00 100.00 76.21 79.31 100.00 100.00
Spain 1.022 0.972 0.912 0.898 55.74 58.69 64.17 93.36 61.03 57.30 60.93 90.54
Sweden 1.225 1.192 1.179 1.180 93.07 100.00 100.00 100.00 98.33 100.00 100.00 100.00
Switzerland 1.083 1.048 1.035 1.044 80.33 96.95 100.00 100.00 86.14 98.00 100.00 100.00
United Kingdom 1.151 1.127 1.115 1.113 95.80 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.097 1.255 1.390 1.525 43.78 36.78 37.23 21.47 38.04 33.15 33.47 5.43
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag autoregression; LC = Lee-Carter Model.

Finally, Tables 10 and 11 show the performance of the point projections of the dependency ratios. For the δ1 ratio (survivors at ages 65–95 or older over ages 20–64), the LC model outperforms the AR(1) approach in ten cases for the 1–5 and 6–10 year horizons, nine cases for the 11–15 year period and eight cases for 16 or more years ahead. On the other hand, for the broader measure of dependency δ2 (ages 0–19 and 65–95 or older over 20–64), the LC approach outranks the autoregressive model in ten cases for the 1–5 year forecast period, six cases for the 6–10 year horizon, and only five cases for 11–15 and 16 or more years ahead. For both measures of dependency and all sixteen data sets, the largest difference in performance between the models does not exceed 26 percent at any forecast horizon. In all but one instance (the United States), the median projections of both dependency ratios underestimate their observed values increasingly as a function of the forecast period. At the 16 or more year horizon, virtually all of the generated forecasts underestimate the observed dependency values, while the converse is also true for the U.S. data (none of the median projections fall below the corresponding ex-post quantities).

Table 10. Ratio of RMSE in median forecasts of age dependency ratio δ1 and percentage forecasts below actual, by country and forecast horizon
Country Ratio of RMSE AR(1)/LC LC: Below actual (percent AR(1): Below actual (percent)
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 1.182 1.170 1.158 1.134 90.10 100.00 100.00 100.00 99.13 100.00 100.00 100.00
Belgium 0.964 0.924 0.913 0.908 88.46 100.00 100.00 100.00 92.02 100.00 100.00 100.00
Canada 1.022 1.001 0.993 0.961 85.11 98.89 100.00 100.00 87.15 100.00 100.00 100.00
Denmark 1.065 1.030 1.023 1.015 65.15 63.16 75.70 97.89 67.70 66.52 75.59 97.89
Finland 1.005 0.958 0.941 0.945 86.23 98.89 100.00 100.00 94.53 100.00 100.00 100.00
France 0.989 0.927 0.902 0.884 88.32 100.00 100.00 100.00 94.66 100.00 100.00 100.00
Germany 0.987 0.960 0.947 0.932 93.75 100.00 100.00 100.00 95.53 100.00 100.00 100.00
Italy 1.026 1.008 1.012 1.023 93.70 100.00 100.00 100.00 94.57 100.00 100.00 100.00
Japan 0.998 1.024 1.054 0.974 61.45 67.19 74.09 100.00 67.91 72.54 83.06 100.00
Netherlands 1.138 1.181 1.241 1.243 72.49 90.54 98.57 100.00 84.07 96.36 100.00 100.00
Norway 0.970 0.946 0.925 0.919 77.61 93.06 100.00 100.00 81.05 89.60 100.00 100.00
Spain 0.966 0.880 0.867 0.891 72.71 92.19 100.00 100.00 75.24 94.36 98.46 100.00
Sweden 1.198 1.167 1.156 1.158 90.61 100.00 100.00 100.00 98.33 100.00 100.00 100.00
Switzerland 1.064 1.036 1.021 1.022 90.20 100.00 100.00 100.00 91.80 100.00 100.00 100.00
United Kingdom 1.070 1.040 1.033 1.035 95.80 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.042 1.146 1.240 1.252 40.36 28.64 18.46 0.00 36.55 14.80 8.69 0.00
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag autoregression; LC = Lee-Carter Model.
Table 11. Ratio of RMSE in median forecasts of age dependency ratio δ2 and percentage forecasts below actual, by country and forecast horizon
Country Ratio of RMSE AR(1)/LC LC: Below actual (percent AR(1): Below actual (percent)
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 1.192 1.170 1.150 1.115 92.10 100.00 100.00 100.00 97.39 100.00 100.00 100.00
Belgium 0.915 0.877 0.870 0.861 88.46 100.00 100.00 100.00 92.02 100.00 100.00 100.00
Canada 1.020 0.995 0.986 0.944 86.15 98.89 100.00 100.00 86.28 98.89 100.00 100.00
Denmark 1.051 1.009 0.983 0.948 68.00 66.64 77.03 97.89 67.89 66.66 74.16 97.89
Finland 0.901 0.846 0.836 0.851 91.14 100.00 100.00 100.00 94.62 100.00 100.00 100.00
France 0.805 0.800 0.817 0.821 88.22 100.00 100.00 100.00 80.34 97.71 100.00 100.00
Germany 0.996 0.968 0.960 0.938 91.97 100.00 100.00 100.00 95.61 100.00 100.00 100.00
Italy 1.007 0.993 0.998 1.008 92.83 100.00 100.00 100.00 94.57 100.00 100.00 100.00
Japan 1.002 1.027 1.020 0.957 68.74 73.58 91.90 100.00 68.78 79.85 91.90 100.00
Netherlands 1.101 1.103 1.136 1.140 71.61 93.94 100.00 100.00 84.94 97.70 100.00 100.00
Norway 0.947 0.920 0.900 0.896 81.57 97.78 100.00 100.00 82.13 94.24 100.00 100.00
Spain 0.924 0.848 0.834 0.851 78.92 95.73 100.00 100.00 80.50 92.19 100.00 100.00
Sweden 1.172 1.141 1.130 1.131 88.78 100.00 100.00 100.00 97.50 100.00 100.00 100.00
Switzerland 1.018 0.985 0.974 0.983 91.00 100.00 100.00 100.00 92.63 100.00 100.00 100.00
United Kingdom 1.032 0.994 0.988 0.989 94.93 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.015 1.134 1.237 1.199 32.64 33.92 15.25 0.00 29.81 24.55 0.00 0.00
SOURCE: Author's calculations
NOTES: RMSE = root mean squared error; AR(1) = Lag autoregression; LC = Lee-Carter Model.

Forecast Performance of Interval Projections

The first two columns in Table 12 display the empirical probability content of the 90-percent forecast confidence intervals generated by the models for the age profile, over all forecast horizons. The third and fourth columns in the same table respectively present the average width of these intervals for the Lee-Carter model, and the ratio of average width between models. The last four columns in Table 12 show similar quantities for life expectancy at birth e0, while Table 13 displays analogous coverage and width measures for the two age dependency ratios δ1 and δ2.

Table 12. Empirical coverage and ratios of average width for the 90-percent interval projections of the age profile and life expectancy at birth, by country
Country Age profile Life expectancy at birth
Empirical coverage (percent) Average width Empirical coverage (percent) Average width
LC AR(1) LC AR(1)/LC LC AR(1) LC AR(1)/LC
Austria 66.02 74.43 0.006 3.559 71.66 24.58 3.666 0.544
Belgium 81.97 89.05 0.011 2.831 100.00 100.00 5.287 0.839
Canada 63.56 82.01 0.003 4.648 76.44 100.00 1.977 1.295
Denmark 87.74 98.57 0.006 8.742 99.78 100.00 4.652 1.112
Finland 79.10 98.07 0.010 9.545 100.00 100.00 5.760 1.542
France 99.88 99.89 0.018 1.517 100.00 100.00 9.955 1.131
Germany 59.06 63.10 0.010 1.450 61.54 44.29 3.101 0.711
Italy 75.26 97.67 0.008 6.173 99.13 100.00 5.770 1.263
Japan 36.43 56.11 0.005 4.696 100.00 100.00 2.490 1.369
Netherlands 97.55 99.92 0.011 3.924 100.00 100.00 6.792 0.998
Norway 66.84 96.29 0.004 7.896 94.01 100.00 3.789 1.078
Spain 84.09 99.99 0.006 4.656 100.00 100.00 5.720 1.219
Sweden 90.88 99.16 0.009 7.251 100.00 100.00 7.124 1.387
Switzerland 91.27 94.82 0.010 3.979 100.00 100.00 5.183 0.847
United Kingdom 71.22 88.34 0.007 4.460 92.36 100.00 5.476 0.968
United States 67.80 82.29 0.006 1.377 99.81 99.81 2.488 0.933
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.
Table 13. Empirical coverage and ratios of average width for the 90-percent interval projections of the age dependency ratios δ1 and δ2, by country
Country Age dependency ratio δ1 Age dependency ratio δ2
Empirical coverage (percent) Average width Empirical coverage (percent) Average width
LC AR(1) LC AR(1)/LC LC AR(1) LC AR(1)/LC
Austria 41.03 24.99 0.043 0.834 36.59 26.54 0.035 1.015
Belgium 54.24 100.00 0.057 1.088 35.38 91.71 0.042 1.302
Canada 39.44 100.00 0.024 1.943 30.45 100.00 0.020 2.258
Denmark 95.33 100.00 0.052 1.843 91.76 100.00 0.038 2.401
Finland 59.16 100.00 0.061 1.792 38.01 100.00 0.042 2.292
France 100.00 100.00 0.114 0.827 100.00 100.00 0.084 1.131
Germany 52.81 57.84 0.044 0.966 54.56 59.74 0.039 1.020
Italy 58.58 100.00 0.069 1.597 38.65 100.00 0.055 1.766
Japan 95.17 100.00 0.039 1.840 79.44 100.00 0.034 2.019
Netherlands 100.00 100.00 0.082 1.363 100.00 100.00 0.065 1.545
Norway 34.66 100.00 0.038 1.902 25.80 100.00 0.026 2.608
Spain 100.00 100.00 0.071 1.550 100.00 100.00 0.057 1.727
Sweden 100.00 100.00 0.086 1.916 99.65 100.00 0.067 2.191
Switzerland 95.71 95.87 0.070 0.935 88.41 95.87 0.058 1.051
United Kingdom 42.23 100.00 0.058 1.548 26.36 100.00 0.042 1.962
United States 99.81 99.81 0.040 0.920 99.62 98.72 0.036 0.890
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Beginning with the age profile, it is evident that over all the age groups, the first-order autoregressive approach yields interval projections in every single case that exhibit greater probability content than the Lee-Carter model, but are also much wider. In general, the LC model seems more likely to generate mortality intervals that are "too narrow" (that is., that fall below their nominal 90-percent level of coverage). Conversely, the AR(1) model tends to produce intervals that are "too wide." For instance, with the LC model, only 4 nations exhibit coverage greater than or equal to 90 percent (France, the Netherlands, Sweden, and Switzerland), while in 9 of the 16 cases empirical coverage falls below 80 percent. By contrast, with the first-order autoregressive approach, probability content is in excess of 90 percent in nine of the data sets, whereas only three countries exhibit coverage below 80 percent (Austria, Germany and Japan). On average, the interval forecasts of mortality produced by the AR(1) model are wider than those of the LC approach by a factor ranging from less than one-and-a-half times wider for the United States, to nearly 10 times wider for Finland (fourth column in Table 12).

Turning to the projections of life expectancy at birth, it is clear that both models tend to generate intervals that are "too wide." With the exceptions of Austria and Germany in the AR(1) model and Austria, Canada, and Germany in the LC approach, empirical coverage exceeds 90 percent for the remaining countries and is either equal or closer to 100 percent in most cases. Moreover, the differences in size between the interval forecasts generated by the two models are far less pronounced than for the age profile. In roughly half of the data sets, each model produces narrower intervals on average than the other. These findings highlight the type of cancellation effects that can occur when the age-specific mortality forecasts are combined to produce such a highly nonlinear aggregate measure of overall performance. Consider, for instance, the interval projections corresponding to Japan. In this case, over all age groups and forecasts horizons the 90 percent interval projections generated by the Lee-Carter model contain observed mortality only 36 percent of the time. However, when the simulated paths are used to compute e0, all 276 interval forecasts of life expectancy at birth contain the corresponding ex-post values, resulting in 100-percent probability coverage.10 The converse can also be the case. In the AR(1) approach, the interval projections of mortality for Austria over the age profile have an empirical probability content of 74 percent, while those associated with the LC model yield 66-percent coverage. Yet, for the latter model, the interval forecasts of life expectancy display 71-percent coverage, with an average width of 3.6 years over all forecast horizons. By contrast, the projections of life expectancy generated by the AR(1) model exhibit extremely poor coverage (24 percent) and are half the size of those produced by the LC approach.

For the OASDI program, a more useful performance evaluation criterion regarding the age-specific mortality forecasts generated by the models involves the forecast error associated with the age dependency ratios presented in Table 13. In this case, with the exceptions of Austria and Germany, where empirical coverage is quite poor, the first-order autoregressive approach produces interval forecasts with probability content in excess of 90 percent for both measures δ1 and δ2. On the other hand, the Lee-Carter model generates intervals that are "too narrow" for half of the data sets and "too wide" for the other half. Specifically, empirical coverage in Austria, Belgium, Canada, Finland, Germany, Italy, Norway and the United Kingdom falls below 60 percent. Not surprisingly, the AR(1) model generates wider interval projections than the LC model in 11 cases for δ1, and 15 cases for δ2.

Finally, Table 14 shows the performance of the interval projections generated by the models over the three broad age categories previously defined. In general, the Lee-Carter model tends to produce interval forecasts of mortality that exceed their hypothetical probability content at the youngest ages, but seriously underestimate it for the older age groups. For instance, in the 0–19 age category there are 12 cases with coverage in excess of 90 percent and only 3 countries with coverage below 80 percent (Germany, Japan and the United States). By contrast, for the retirement ages (65–95 or older), coverage stays above 90 percent in 2 countries (France and the Netherlands), while it falls below 80 percent in the remaining 14 countries. On the other hand, for all three age categories (0–19, 20–64, and 65–95 or older), the first-order autoregressive approach generates interval forecasts with over 90-percent probability content in the majority of instances. Moreover, in every single case the AR(1) interval projections are narrower than those of the LC model for the youngest ages, but much wider for the 65–95 or older age class.

Table 14. Empirical coverage and ratios of average width for the 90-percent interval projections of mortality, by country and broad age-categories
Country Ages 0–19 Ages 20–64 Aged 65–95 or oder
Empirical coverage (percent) Average width Empirical coverage (percent) Average width Empirical coverage (percent) Average width
LC AR(1) AR(1)/LC LC AR(1) AR(1)/LC LC AR(1) AR(1)/LC
Austria 85.07 97.20 0.452 81.22 76.91 0.963 32.85 54.96 4.086
Belgium 99.62 99.12 0.506 92.18 91.82 1.033 56.23 78.30 3.142
Canada 97.35 97.63 0.804 55.78 68.16 1.699 49.42 88.67 5.217
Denmark 98.38 98.28 0.762 94.61 97.80 1.215 71.33 99.78 10.820
Finland 99.69 99.26 0.559 86.45 98.24 1.926 54.94 96.98 11.065
France 100.00 100.00 0.571 100.00 100.00 1.638 99.64 99.67 1.558
Germany 77.00 66.16 0.377 48.93 54.09 0.976 59.26 72.47 1.518
Italy 99.96 90.21 0.584 88.58 100.00 1.551 40.49 100.00 7.279
Japan 36.74 38.22 0.538 34.93 35.72 0.858 38.15 95.12 5.093
Netherlands 99.86 99.67 0.558 100.00 100.00 1.097 92.75 100.00 4.475
Norway 93.22 91.51 0.732 85.65 96.45 1.298 23.80 99.51 10.172
Spain 99.96 99.96 0.713 93.41 100.00 1.434 60.78 100.00 5.615
Sweden 99.33 96.47 0.513 99.98 100.00 1.560 73.14 100.00 8.693
Switzerland 97.16 98.09 0.530 96.77 96.65 1.025 79.99 90.14 4.363
United Kingdom 100.00 92.49 0.479 85.39 85.31 1.119 32.44 89.26 5.503
United States 72.73 86.30 0.700 59.03 79.48 1.226 75.57 83.04 1.414
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Performance by Forecast Horizon

Table 15 displays the empirical probability content and ratio of average width corresponding to the 90-percent interval projections of the models over the age profile and various forecast horizons (1–5, 6–10, 11–15 and 16 or more years ahead). Tables 16 through 18 present similar quantities for the interval projections of life expectancy at birth e0 and the two age dependency measures δ1 and δ2. Although not always the case, coverage over the age profile tends to decrease with the length of the forecast horizon. For the 1–5 year period, the LC and AR(1) models generate interval forecasts with over 80-percent coverage in 10 and all 16 countries, respectively. Out of these countries, coverage exceeds the hypothetical 90-percent level in 6 cases for the LC model and 12 cases for AR(1) approach. On the other hand, for the most distant forecast period (the 16 or more year horizon), probability content lies above 80 percent in 6 countries for the LC model and 10 countries for AR(1) approach. Even at this forecast length, coverage exceeds 90 percent in half of all cases for the latter model. In terms of the size of the generated intervals, the LC model generates narrower projections over the age profile than the AR(1) model across all forecast horizons. As previously mentioned, this is because interval projections for the oldest age groups in the first-order autoregressive approach are much wider.

Table 15. Empirical coverage and ratios of average width for the 90-percent interval projections of the age profile, by country and forecast horizon
Country Empirical coverage LC (percent) Empirical coverage AR(1) (percent) Average width AR(1)/LC
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 74.40 73.15 68.16 54.97 86.38 81.83 73.84 62.69 3.391 3.226 3.425 3.825
Belgium 91.62 86.60 78.58 75.16 97.09 94.05 86.25 82.65 2.933 2.749 2.757 2.877
Canada 68.60 65.22 62.07 60.30 92.80 85.96 78.96 74.72 4.635 4.398 4.528 4.829
Denmark 83.44 87.29 89.52 89.24 97.44 97.61 98.55 99.63 8.199 7.950 8.338 9.301
Finland 90.09 87.30 77.43 68.14 99.05 99.09 97.97 96.88 7.861 8.143 9.007 10.929
France 99.45 100.00 100.00 100.00 99.86 100.00 99.63 100.00 1.634 1.530 1.511 1.489
Germany 72.32 67.19 63.57 42.87 80.82 73.46 69.18 41.74 1.602 1.454 1.419 1.430
Italy 88.85 80.80 73.01 64.71 99.65 99.55 97.45 95.39 5.788 5.807 6.046 6.474
Japan 75.53 49.42 25.26 10.87 83.94 64.89 48.02 38.29 4.086 4.158 4.545 5.225
Netherlands 95.96 98.19 98.30 97.67 99.63 100.00 100.00 100.00 3.990 3.773 3.826 4.009
Norway 72.26 70.65 66.57 61.23 94.95 94.11 94.54 99.59 7.717 7.395 7.694 8.265
Spain 87.63 83.28 81.56 83.99 99.96 100.00 100.00 100.00 4.557 4.421 4.523 4.829
Sweden 92.63 94.20 93.31 86.71 99.34 98.58 98.62 99.68 7.009 6.892 7.086 7.497
Switzerland 90.17 93.94 95.03 88.61 97.52 98.99 97.68 89.95 4.019 3.806 3.884 4.064
United Kingdom 87.02 80.69 69.02 58.39 98.65 95.06 89.78 78.07 4.632 4.349 4.366 4.503
United States 71.20 69.71 68.12 64.29 86.42 85.39 87.48 74.52 1.623 1.463 1.384 1.283
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 16 shows the empirical content of the interval projections of life expectancy at birth. Clearly, with the exceptions of Austria and Germany, where coverage deteriorates with the length of the forecast horizon, both models generate intervals that are "too wide." For most of the data sets there is 100 percent coverage at every forecast horizon. The forecast intervals of e0 produced by the LC model are narrower than those of the AR(1) approach in 11 cases for the 1–5 year period, and 10 cases for the remaining forecast horizons.

Table 16. Empirical coverage and ratios of average width for the 90-percent interval projections of life expectancy at birth e0, by country and forecast horizon
Country Empirical coverage LC (percent) Empirical coverage AR(1) (percent) Average width AR(1)/LC
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 100.00 100.00 95.78 21.18 79.31 30.57 3.21 0.00 0.577 0.546 0.538 0.538
Belgium 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.868 0.833 0.828 0.839
Canada 100.00 100.00 94.29 35.83 100.00 100.00 100.00 100.00 1.258 1.240 1.282 1.335
Denmark 100.00 98.89 100.00 100.00 100.00 100.00 100.00 100.00 1.181 1.093 1.094 1.112
Finland 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.425 1.420 1.480 1.659
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.132 1.224 1.184 1.066
Germany 98.95 92.27 84.37 4.69 95.84 66.10 41.81 0.00 0.725 0.704 0.706 0.713
Italy 100.00 100.00 100.00 97.50 100.00 100.00 100.00 100.00 1.355 1.290 1.256 1.233
Japan 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.161 1.220 1.342 1.526
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.059 0.995 0.991 0.988
Norway 99.00 89.69 83.73 100.00 100.00 100.00 100.00 100.00 1.113 1.064 1.061 1.083
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.257 1.208 1.204 1.221
Sweden 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.465 1.402 1.385 1.368
Switzerland 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.902 0.852 0.842 0.836
United Kingdom 100.00 100.00 100.00 79.63 100.00 100.00 100.00 100.00 1.041 0.980 0.966 0.949
United States 99.13 100.00 100.00 100.00 99.13 100.00 100.00 100.00 0.882 0.908 0.925 0.959
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Finally, Tables 17 and 18 present the empirical probability coverage of the interval forecasts for the age-dependency ratios δ1 and δ2. Clearly, for the Lee-Carter model, performance tends to deteriorate dramatically with the distance of the forecast horizon. By contrast, with the exceptions of Austria and Germany, the AR(1) approach yields interval projections with 100-percent probability content in the large majority of cases across all forecast periods. For instance, over the 1–5 year horizon, coverage in the LC model exceeds 80 percent in 15 cases for δ1, and in 13 cases for δ2. On the other hand, over the longest forecast period (16 or more years ahead), these quantities drop down to 8 and 6 cases, respectively. In fact, for this same period, probability content in the LC model is actually 0 percent in five and eight nations for the δ1 and δ2 ratios, respectively. Conversely, over the 16 or more years horizon, the AR(1) approach yields coverage in excess of 90 percent in 13 and 12 cases. Generally, the interval forecasts corresponding to the first-order autoregressive approach are wider on average than those of the LC model.

Table 17. Empirical coverage and ratios of average width for the 90-percent interval projections of the age-dependency ratio δ1, by country and forecast horizon
Country Empirical coverage LC (percent) Empirical coverage AR(1) (percent) Average width AR(1)/LC
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 92.16 66.38 30.19 0.00 78.27 35.15 1.54 0.00 0.903 0.830 0.818 0.828
Belgium 91.20 80.63 58.63 11.91 100.00 100.00 100.00 100.00 1.125 1.068 1.071 1.096
Canada 73.99 69.83 37.63 0.00 100.00 100.00 100.00 100.00 1.938 1.868 1.909 1.993
Denmark 92.94 87.91 95.80 100.00 100.00 100.00 100.00 100.00 1.979 1.820 1.816 1.835
Finland 99.13 90.72 66.10 10.12 100.00 100.00 100.00 100.00 1.721 1.662 1.725 1.902
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.863 0.822 0.819 0.825
Germany 98.95 88.43 55.56 0.00 98.95 88.43 70.84 4.91 1.007 0.957 0.953 0.966
Italy 98.13 93.52 63.08 9.20 100.00 100.00 100.00 100.00 1.697 1.619 1.588 1.570
Japan 95.61 98.82 100.00 89.58 100.00 100.00 100.00 100.00 1.638 1.669 1.798 2.002
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.460 1.356 1.350 1.351
Norway 80.67 49.54 29.24 0.00 100.00 100.00 100.00 100.00 1.982 1.888 1.883 1.899
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.592 1.518 1.524 1.565
Sweden 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2.006 1.929 1.914 1.894
Switzerland 99.20 100.00 100.00 89.67 100.00 100.00 100.00 89.67 1.003 0.928 0.923 0.929
United Kingdom 91.74 77.30 33.69 0.00 100.00 100.00 100.00 100.00 1.709 1.572 1.542 1.509
United States 99.13 100.00 100.00 100.00 99.13 100.00 100.00 100.00 0.949 0.919 0.915 0.917
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.
Table 18. Empirical coverage and ratios of average width for the 90-percent interval projections of the age-dependency ratio δ2, by country and forecast horizon
Country Empirical coverage LC (percent) Empirical coverage AR(1)(percent) Average width AR(1)/LC
1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more 1–5 6–10 11–15 16 or more
Austria 87.24 61.34 19.72 0.00 82.96 37.58 1.54 0.00 1.077 0.992 0.987 1.024
Belgium 85.38 53.00 24.37 0.00 95.12 92.84 94.64 87.05 1.348 1.274 1.278 1.315
Canada 68.42 54.41 17.25 0.00 100.00 100.00 100.00 100.00 2.276 2.175 2.208 2.314
Denmark 87.62 84.48 89.22 98.75 100.00 100.00 100.00 100.00 2.591 2.381 2.369 2.384
Finland 86.78 61.57 26.50 0.00 100.00 100.00 100.00 100.00 2.148 2.097 2.198 2.460
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.973 1.082 1.149 1.180
Germany 98.95 91.10 60.91 0.00 98.95 93.38 74.60 4.91 1.069 1.012 1.007 1.019
Italy 94.13 67.32 16.36 0.00 100.00 100.00 100.00 100.00 1.891 1.798 1.754 1.731
Japan 89.73 95.27 96.46 52.49 100.00 100.00 100.00 100.00 1.828 1.843 1.971 2.178
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.665 1.538 1.529 1.529
Norway 61.45 42.13 15.12 0.00 100.00 100.00 100.00 100.00 2.760 2.613 2.593 2.578
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.813 1.713 1.702 1.725
Sweden 98.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2.278 2.195 2.187 2.173
Switzerland 99.20 100.00 98.33 72.25 100.00 100.00 100.00 89.67 1.136 1.050 1.040 1.039
United Kingdom 79.42 41.04 6.06 0.00 100.00 100.00 100.00 100.00 2.171 1.985 1.944 1.919
United States 98.26 100.00 100.00 100.00 99.13 100.00 100.00 96.88 0.947 0.899 0.887 0.876
SOURCE: Author's calculations
NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Conclusion

This paper evaluates the out-of-sample forecast performance of two stochastic models used to forecast age-specific mortality rates: (1) a variant of the Lee-Carter (LC) model that accommodates bias correction for the jump off year; and (2) a set of univariate first-order autoregressions AR(1) with a common residual covariance matrix. To this aim, mortality data from 16 industrialized nations, each comprising 21 different age groups is used to compare observed ex-post mortality rates to the forecasts produced by the models. To assess overall model performance, several functions of the individual age-specific mortality rates are entertained, including forecast error over the entire age profile, life expectancy at birth e0, and two alternative measures of the age-dependency ratio. The first measure (denoted δ1) involves the ratio of population ages 65–95 or older to those ages 20–64. The second criterion (δ2) entails a broader measure of dependency that includes both the youngest and oldest age groups (the ratio of population ages 0–19 and ages 65–95 or older to those aged 20–64).

With few exceptions, it is generally found that the differences in RMSE associated with the median projections of the models are not substantial. In most cases, the median forecasts of both models tend to moderately overpredict actual mortality over the age profile. This is particularly the case for the retirement ages (65–95 or older), where a high proportion of the forecasts corresponding to the oldest age groups overestimate mortality. Conversely, the large majority of the median forecasts of e0, δ1 and δ2 underestimate their observed values, with the proportion of forecasts involving underestimation increasing with the length of the forecast horizon.

The retirement ages account for the overwhelming majority of total forecast error over the age profile. For the youngest age category (ages 0–19), the first order autoregressive approach outperforms the LC model in 11 of the 16 countries considered. However, over all ages and forecast horizons each model displays lower RMSE than the other in half of all cases. The same is true for the median projections of e0 and δ1, where over all forecast periods, each model outperforms the other in roughly half of the data sets entertained. On the other hand, the median projections of δ2 corresponding to the AR(1) model exhibit lower forecast error than those of the LC method in 11 cases. In the very short-run (1–5 year horizons), the LC model outranks the AR(1) approach in 13 countries for the median forecasts of e0, and 10 countries for the median projections of δ1 and δ2.

While differences in the performance of the point projections of both models tend to be fairly small, much more variation is found in the performance of the generated 90-percent confidence interval forecasts. The AR(1) approach typically produces interval projections of mortality across all ages that are close to and often exceed their hypothetical 90-percent probability content. The LC model also generates interval forecasts with adequate empirical coverage for the youngest age groups (ages 0–19), but seriously underestimates the 90-percent level of coverage for the retirement ages (65–95 or older). Not surprisingly, the AR(1) approach produces much wider intervals on average than the LC model for the oldest age category, although it also yields narrower projections for the youngest ages. Hence, over the entire age profile, the LC model is more likely to generate interval projections that are "too narrow," whereas the AR(1) method tends to produce interval forecasts that are "too wide."

For life expectancy at birth e0, both models clearly generate interval forecasts that are "too wide" (that is, with coverage in excess of 90 percent). In fact, for the large majority of countries the empirical probability content of the projections of e0 is 100 percent, even over the longest forecast horizons (16 or more years ahead). With a couple of exceptions, the AR(1) approach also generates interval forecasts of the dependency ratios δ1 and δ2 with 100-percent empirical coverage. In this case, however, the projections of the LC model deteriorate quickly with the length of the forecast period, so that at the 16 or more years horizon, coverage is adequate in about half of the data, but extremely poor for the other half. Indeed, over this same forecast period the LC interval projections of δ2 in 8 of the 16 countries never contain their corresponding ex-post values (that is, there is 0 percent probability content).

From the perspective of a pay-as-you-go public retirement program, the age-dependency ratios seem to be more relevant performance evaluation criteria than either the projections of life expectancy at birth or the age profile. In light of the evidence suggesting the tendency of the Lee-Carter model to underestimate forecast uncertainty for these ratios, a conservative approach to modeling mortality appears to favor the first-order autoregressive model.

Notes

1 Alternatively, the first p principal components can be defined as the eigenvectors corresponding to the largest p eigenvalues of the product  M ˜ M ˜ .

2 See for instance Girosi and King (2004; Chapter 2).

3 Notice that there are alternative ways to implement bias correction in the Lee-Carter model. For instance, Lee and Carter (1992) suggest setting the value of αa to the most recent rates prior to performing SVD, while ignoring the normalization constraint on kt. By contrast, Lee (2000) favors estimating the model as originally proposed, prior to changing αa. This paper follows the latter approach.

4 The Congressional Budget Office's stochastic model of Social Security's long-term trust fund finances uses a similar approach (CBO; 2000).

5 The HMD is a collaborative project sponsored by the University of California at Berkeley and the Max Planck Institute for Demographic Research. The data, as well as both general and country specific documentation can be accessed via www.mortality.org or www.humanmortality.de.

6 The mortality rates corresponding to Germany were obtained by pooling the death counts and risk-to-exposure estimates listed separately for East and West Germany in the HMD. The U.K. data comprises England and Wales.

7 Notice that Lee and Miller (2001) employ a different variation in the second stage estimation of kt, matching life expectancy for that year instead of total number of deaths.

8 For single-year ages except age 0, w a , t  is usually set to one-half, under the assumption that deaths occur uniformly. In addition, notice that for period life table calculations, the mortality rates m a , t  are transformed into probabilities of death q a , t  using standard procedures.

9 For comparison, the corresponding values reported in Table V.A2 of the 2005 Trustees Report, based on the total Social Security area population at mid-year in 2000 are respectively δ 1 , t = 0.208  and δ 2 , t = 0.693.

10 See the last column in Table 1.

References

Bell, W. 1997. Comparing and assessing time series methods for forecasting age-specific fertility and mortality rates. Journal of Official Statistics 13(3): 279–303.

Bell, W., and B. Monsell. 1991. Using principal components in time series modeling and forecasting of age-specific mortality rates. Paper presented at the 1991 Annual Meetings of the Population Association of America, Washington, DC.

Board of Trustees of the Federal Old-Age and Survivors Insurance and Disability Insurance Trust Funds. 2005. 2005 Annual Report. Washington, DC: U.S. Government Printing Office.

Congressional Budget Office. 2001. Uncertainty in Social Security's long-term finances: A stochastic analysis. Washington, DC: U.S. Government Printing Office.

Denton, F. T., C. H. Feaver, and B. G. Spencer. 2005. Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy. Journal of Population Economics 18: 203–227.

Girosi, F., and G. King. 2004. Demographic Forecasting. Unpublished book manuscript.

Lee, R. D. 2000. The Lee-Carter method for forecasting mortality, with various extensions and applications. North American Actuarial Journal 4(1)80–91.

Lee, R. D., and L. R. Carter. 1992. Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87: 659–671.

Lee, R. D., and T. Miller. 2001. Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38(4)537–549.

Wilmoth, J. 1993. Computational methods for fitting and extrapolating the Lee-Carter model of mortality change. Technical Report, Department of Demography, University of California, Berkeley.

———. Methods protocol for the human mortality database. Technical Report. Available at www.mortality.org.